首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   8篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2007年   1篇
  2002年   1篇
排序方式: 共有8条查询结果,搜索用时 187 毫秒
1
1.
Kerman city has a semiarid-arid climate with an average annual precipitation of about 158 mm. The area is underlain by soluble subsoil and alluvial deposits, overlying highly fractured Cretaceous limestones. Geo-environmental studies indicate that both paleokarst and active karst features are developed in the area. The paleokarsts were developed in the Upper Cretaceous limestone during the cold, humid periods of Post Cretaceous and probably Early Quaternary time and include honeycombs, solution flutes, rillenkarren, caverns, and solution collapse dolines. Active karst landforms occur by combined piping-induced and limestone solution at depth in subsoils, and alluvial deposits and bajada that overly potent karstic limestones and cover subsidence sinkholes and subjacent alluvial karst collapse dolines. Many factors, such as soluble compounds (salt and gypsum), desiccation cracks, and Qanat (dug water wells), could contribute to the development of karstic landforms. The most immediate cause for active karst landforms is considered to be the drawdown of the water table in the area. There is an increasing demand for groundwater consumption to irrigate pistachio fields. Excessive pumping of the groundwater lowers the water table about 80 cm per year. This rate of drawdown accelerates land subsidence (about 6 cm per year), creates circular patterns of fractures in the ground and in buildings, disrupts agricultural work and urbanization projects, and tilts foundations. These geohazards indicate that ground sinking and karstification are in progress in the alluvial deposits and underlying limestones. The disturbance and expense caused by the geohazards could be mitigated by the application of overhead sprinkler irrigation for pistachio fields or by planting less thirsty plants.  相似文献   
2.
The Sarcheshmeh copper deposit is one of the world's largest Oligo-Miocene porphyry copper deposits in a continental arc setting with a well developed supergene sulfide zone, covered mainly by a hematitic gossan. Supergene oxidation and leaching, have developed a chalcocite enrichment blanket averaging 1.99% Cu, more than twice that of hypogene zone (0.89% Cu). The mature gossans overlying the Sarcheshmeh porphyry copper ores contain abundant hematite with variable amounts of goethite and jarosite, whereas immature gossans consist of iron-oxides, malachite, azurite and chrysocolla. In mature gossans, Au, Mo and Ag give significant anomalies much higher than the background concentrations. However, Cu has been leached in mature gossans and gives values close or even less than the normal or crustal content (< 36.7 ppm). Immature gossans are enriched in Cu (160.3 ppm), Zn (826.7 ppm), and Pb (88.6 ppm). Jarosite- and goethite-bearing gossans may have developed over the pyritic shell of most Iranian porphyry copper deposits with pyrite–chalcopyrite ratios greater than 10 and therefore, do not necessarily indicate a promising sulfide-enriched ore (Kader and Ijo). Hematite-bearing gossans overlying nonreactive alteration halos with pyrite–chalcopyrite ratios about 1.5 and quartz stringers have significant supergene sulfide ores (Sarcheshmeh and Miduk). The copper grade in supergene sulfide zone of Sarcheshmeh copper deposit ranges from 0.78% in propylitized rocks to 3.4% in sericitized volcanic rocks, corresponding to the increasing chalcopyrite–pyrite or chalcocite–pyrite ratios from 0.3 to 3, respectively. Immature gossans with dominant malachite and chrysocolla associated with jarosite and goethite give the most weakly developed enrichment zone, as at God-e-Kolvari. The average anomalous values of Au (59.6 ppb), Mo (42.5 ppm) and Ag (2.6 ppm) in mature gossans associated with the Sarcheshmeh copper mine may be a criterion that provides a significant exploration target for regional metallogenic blind porphyry ore districts in central Iranian volcano–plutonic continental arc settings. Drilling for new porphyry ores should be targeted where hematitic gossans are well developed. The ongoing gossan formation may result in natural acidic rock drainage (ARD).  相似文献   
3.
To discriminate the mineral potentiality of the trachybasalt around the Miocene Sarcheshmeh porphyry copper deposit, petrogeochemical characteristics of more than 45 samples of the volcanic rocks were studied. Sarcheshmeh is one of the world's largest Miocene porphyry copper deposits in a continental arc setting and contains about 1200 million tonnes of ores with an average grade of 1.2 percent copper, 0.03 percent molybdenum, 3.9 g/t Ag and 0.11 g/t Au. The biotized and sericitized trachybasalts around the Sarcheshmeh deposit are associated with chalcopyrite, pyrite and molybdenite and and are enriched in Cu (>3108 ppm), K2O (>4.2%), Rb (>155 ppm) and MgO (>2.9%), but depleted in yttrium (<11 ppm), MnO (<0.06%), CaO (<0.6%), Na2O (<0.33%), Sr (<107 ppm), and Ba (<181 ppm). The propylitized trachybasalts are enriched in CaO (>9.1%), Na2O (>3.2%), MnO (>0.24%), Y (>18.2 ppm), and Ba (>323 ppm). The results demonstrate that the diagrams of loss on ignition ? Cu, Cu ? Y, K2O/K2O + Na2O + CaO ? Cu and Y ? MnO may be used as an exploration guide for undiscovered porphyry copper mineralization in the Central Iranian volcano—plutonic copper belt.  相似文献   
4.
The Influence of Shearing Velocity on Shear Behavior of Artificial Joints   总被引:1,自引:1,他引:0  
In this paper, the effects of shear velocity on the shearing behavior of artificial joints have been studied at different normal stress levels. Here, artificial joints with planar and rough surfaces were prepared with the plaster (simulating soft rock joints) and concrete (medium-hard rock joints) materials. The rough joints had triangular shaped asperities with 10° and 20° inclination angles. Direct shear tests were performed on these joints under various shear velocities in the range of 0.3–30 mm/min. The planar plaster–plaster and planer concrete–concrete joints were sheared at three levels of normal stress under constant normal load boundary condition. Also, the rough plaster–plaster and concrete–concrete joints were sheared at one level of normal stress under constant normal stiffness boundary condition. The results of the shear tests show that the shearing parameters of joints, such as shear strength, shear stiffness and friction angle, are related to the shear velocity. Shear strength of planar and rough plaster–plaster joints were decreased when the shear velocity was increased. Shear strength of concrete joints, except for rough joints with 10° inclination, increased with increasing shear velocity. Regardless of the normal stress level, shear stiffness of both planar plaster–plaster and concrete–concrete joints were decreased when the shear velocity was increased.  相似文献   
5.
Shear behaviour of the joints formed by the interface of two different material types, such as rock and cemented paste backfill, rock and concrete or two different rock types, have practical importance in many rock engineering activities. This paper presents the results of an experimental investigation into the shear behaviour of these special joints under pseudo-static shear velocity. Direct shear tests on concrete–plaster interfaces were carried out under boundary conditions of constant normal load and constant normal stiffness. Shearing velocities of the performed tests were in the range of 0.3–30 mm/min. The results of the shear tests conducted on the planar and rough artificial prepared joints showed that the shearing velocity has a significant influence on the shear strength, friction angle and shear stiffness of the hard–soft material interface. So that, these parameters were decreased when shear velocity was increased. Also, comparison of the tests results that performed on the concrete–plaster joints with those from tests on the plaster–plaster and concrete–concrete interfaces showed that the shear behaviour of concrete–plaster interface is governed mainly by the shear parameters of the plaster block (namely softer material).  相似文献   
6.
Recently, new theories on underground geophysical and geochemical interactions which had been reported to occur during the preparation stages of earthquakes and the remotely measurable variations have been put to test and some warning factors were suggested as earthquake precursors. Data vendors are providing daily basis information from the earth's surface by combining remote sensing data and in situ observations. In this paper, we analyze atmospheric, oceanic, and surface changes in the ocean, coast, and land lying near the epicenters of two recent major earthquakes. The changes are studied in terms of the regional fault locations which have been reported by the U.S. Geological Survey as the shake triggering geological structures. Our detailed analyses showed anomalous increases of surface latent heat flux (SLHF) for both the earthquakes. Meaningfully limited to the geographical extents of the regional active faults, the SLHF variation patterns suggest pre-seismic activity 2–3 weeks before the main events. The agreement of these variations with abnormalities in other climatic and surface factors like relative humidity and temperature represents an unusual situation during the same period as well. Spatiotemporal variations of chlorophyll-a was also studied as another earthquake indicator. Abnormal rises in these factors are possibly caused by the formation of micro-cracks, heat production, evaporation, ionization, and upwelling of nutrient-rich water produced by pre-seismic activity prior to the main events.  相似文献   
7.
In order to investigate the environmental geochemistry of groundwaters in the urban areas of Kerman city, 50 samples of natural groundwaters, urban groundwaters and drinking waters were collected. High values of salinity (5.8???), electrical conductivity (10,270???S/cm), total dissolved solids (TDS) (5,140?mg/kg), fluorine (4.9?mg/kg), chlorine (3,974?mg/kg), bromine (1.6?mg/kg) and sulfate (4,306?mg/kg) in the northern part of the studied area are caused by dissolution of evaporate bed rocks and Quaternary salt plains. Low values of salinity (0.5???), electrical conductivity (973???S/cm), TDS (486?mg/kg), fluorine (0.8?mg/kg), chlorine (297?mg/kg), bromine (0.25?mg/kg) and sulfate (262?mg/kg) are only reported in the southern part of the Kerman city. High values of nitrate (NO3 ?) range from 134 to 725?mg/kg and nitrite (NO2 ?) content is variable between 0.04 to 23.45?mg/kg. These values indicate mixing of groundwaters with wastewaters. The heavy metal values in groundwaters around the Kerman city show 20.5???g/kg Cu, 5.88???g/kg Mo, 16.2???g/kg Pb, 70???g/kg Zn, 11.6???g/kg Cr, 1.99???g/kg Co, 4.13???g/kg Ni, respectively. Furthermore, the natural aquifers of Kerman city contain 24???g/kg Cu, 8.15???g/kg Mo, 18.25 Pb, ??g/kg, 193???g/kg Zn, 14.7???g/kg Cr, 3.97???g/kg Co and 7.45???g/kg Ni, respectively. The results demonstrate that the main sources of contamination are related to the natural evaporates, mixing of groundwaters with wastewaters and constructional materials in the area.  相似文献   
8.
The preparation process of an impending earthquake may leave fingerprints on the earth??s surface. Elastic strain in rocks, formation of micro-cracks, gas releases and other chemical or physical activities in the earth??s crust before and during earthquakes has been reported to cause rises in temperature, surface latent heat flux (SLHF), upwelling index and chlorophyll-a (Chl-a) concentration on the ground or sea surface. Changes in surface temperature can be monitored with thermal infrared sensors such as NOAA-AVHRR and microwave radiometers like AMSR-E/Aqua. SLHF data and upwelling indices are provided by National Centers for Environmental Prediction (NCEP) Reanalysis Project and Pacific Fisheries Environmental Laboratory, respectively. This study examines behaviors of the above four factors prior to the past three oceanic and coastal earthquakes occurred at the Pacific Ocean (Northern California of June 15, 2005, Central California of September 28, 2004, and December 22, 2003). We were successful in detecting pre-earthquake anomalies prior to all three earthquakes. Our detailed analysis revealed 1?C5?°C rises in surface temperature in epicentral areas. Considerable anomalies in Chl-a concentration, 1?C2?weeks before the day of the main earthquakes, were spotted, which are attributed to the rise in upwelling index. Time series of SLHF showed meaningful rises from 1?month to a fortnight before the earthquake events. One problem in our research was the low resolution of the data which makes the graphs that are generated from NCEP database affected by all sources of anomalies, other than seismic activities, within an about 1.8°?C2.5° (200?km) area.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号