首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   7篇
海洋学   1篇
  2018年   3篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
  2008年   2篇
排序方式: 共有8条查询结果,搜索用时 62 毫秒
1
1.
Groundwater in Sfax City (Tunisia) has been known since the beginning of the century for its deterioration in quality, as a result of wastewater recharge into the aquifer. An average value of 12 × 106 m3 of untreated wastewater reaches the groundwater aquifer each year. This would result not only in a chemical and biological contamination of the groundwater, but also in an increase of the aquifer piezometric level. Quantitative impacts were evaluated by examining the groundwater piezometric level at 57 surface wells and piezometers. The survey showed that, during the last two decades, the groundwater level was ever increasing in the urban area with values reaching 7 m in part; and decreasing in Sidi Abid (agricultural area) with values exceeding −3 m. Groundwater samples for chemical and microbial analysis were collected from 41 wells spread throughout the study area. Results showed significantly elevated levels of sodium, chlorides, nitrates and coliform bacteria all over the urban area. High levels (NO3: 56–254 mg/l; Na >1,500 mg/l; Coliforms >30/100 ml) can be related to more densely populated areas with a higher density of pit latrine and recharge wells. Alternatively results showed a very variable chemical composition of groundwater, e.g. electrical conductivity ranges from 4,040 to19,620 μs/cm and the dry residual varies between 1.4 and 14 g/l with concentrations increasing downstream. Furthermore a softening of groundwater in Set Ezzit (highly populated sector) was observed.  相似文献   
2.
3.
Shallow groundwater is one of the main water resources in the arid and semi-arid regions. However, it is threatened by not only the reduced rainfall and recharge capacity, but also the water table drawdown and seawater intrusion. Such factors could cause a deterioration of the water quality and consequently the loss of a valuable hydraulic resource. This study aimed to improve our knowledge on the groundwater chemical quality evolution of the Sfax shallow aquifer, one of the most vulnerable areas in Tunisia, by developing a geochemical study using statistical and numerical methods. Salinization was identified by factorial analysis, PCA, and hierarchical clustering analysis in addition to the numerical MODPATH model. These findings confirmed that the groundwater quality has deteriorated due to natural and anthropogenic processes with a different influence of mineralization factors. They also revealed the location of seawater intrusion by focusing on the most vulnerable areas which are Chaffar and Djbeniana. Methodologically, the use of MODPATH model for seawater intrusion determination might be considered as the backbone for future studies in Tunisian coastal aquifers. The numerical model supports the results obtained by the geochemical analysis. Both methods are valuable tools as they contribute to trend determinations, management, and recovery plans.  相似文献   
4.
The macrozoobenthos associated with the introduced pearl oyster Pinctada radiata has been sampled at two different spatial scales of three sectors (order of hundreds of kilometres) and of eight localities (order of tens of kilometres). Moreover, the NW sector was selected to compare three localities with the presence of P. radiata (low density) and one locality where it was totally absent. The first design was hierarchical, with random localities nested within sectors; the second one was an asymmetrical factorial design, in which the presence/absence of Pinctada and hydrodynamism were considered. Similarity relationships were investigated by means of multivariate clustering, similarity percentage analysis and nm-MDS ordination; the two experimental designs have been tested by permutational MANOVA and analysis of dispersion (PERMDISP). Most of the variability of the associated zoobenthic community appeared to be mainly captured by local environmental factors; the meso-scale variability was more discriminating than differences at larger spatial scale. Large scale NW–SE biogeographic gradient may also have some effects in the assemblage composition. Although the whole arrangement of samples in the MDS plane showed a clear Bray-Curtis distance between the locality without Pinctada and all the remaining sites, pair-wise contrasts were not all significant. The factor “presence/absence” was not significant in this design, whereas the exposure was more indicative of differences in the local assemblage composition. These results may not confirm that the community structure variability is due to the impact of Pincata invasion because the potential and subtle community shift may be masked by the overwhelming influence of just the local environmental gradients. In spite of this, the introduced oyster may play the role of an engineer species at high densities, contributing to the complexity of the benthic habitat and influencing the trophic pattern of its fauna.  相似文献   
5.
A hydrogeochemical approach has been carried out in the Mio-Plio-Quaternary aquifer system of northern Sfax to investigate the geochemical evolution, the origin of groundwaters and their circulation patterns. The groundwater samples collected from different wells seem to be dominated by sodium chloride type to sulphate chloride type. Detail analysis of chemical data including the thermodynamic calculations was used to assess that the chemical evolution of groundwater is primarily controlled by water–rock interactions. The values of sodium absorption ratio and electrical conductivity of the groundwater were plotted in the US Salinity Laboratory diagram for irrigation water. Most of the water samples in northern Sfax fall in the fields of C4S1, C4S2 and C4S3 indicating very high salinity and medium to high sodium alkalinity hazard. Thus, groundwater quality is ranging between doubtful to unsuitable for irrigation uses under normal condition, and further action for salinity control is required in remediating such problem. Principal component analysis of geochemical data used in conjunction with bivariate diagrams of major elements indicates that groundwater mineralization is mainly controlled by (1) water–rock interaction processes, (2) anthropogenic process in relation with return flow of NO3-rich irrigation waters and (3) domestic discharges.  相似文献   
6.
In the current research, solidification/stabilization (S/S) treatment of the contaminated soil using hydraulic binders and additives was used to (1) reduce the mobility of organic and inorganic contaminants and (2) compare the ability of various binders in fixing contaminants. The samples were collected from Franco-Tunisian Petroleum Company, located in Sidi Litayem, Sfax (Southern Tunisia). Leaching tests were performed on contaminated soil, containing metallic elements, and hydrocarbons. Calcium aluminate cement (CAC), ordinary Portland cement (OPC), and ground-granulated blast-furnace slag (GGBFS), additives especially the bentonite and water, were used for S/S treatment. The obtained standard specimens were subjected for treating after treatment the leachability of pollutants, compressive strength (CS), and XRD analysis. The results of analysis conducted on contaminated soils showed that concentrations of metallic elements were in the range of 9.08–427 mg/kg and 15,520 mg/kg of organic compound. Next, 10% of the used binder improved the immobilization of pollutants and gave a satisfactory CS exceeding 1 MPa. Thus, the CAC is more effective in reducing the leachability of metal contaminants than OPC + GGBFS and produces much higher strength, which was of the order of 2.41 MPa. The mechanical characterization was confirmed by XRD analysis. The lowest values of organic compounds are presented in mixtures treated by 10% of used binder, indicating the effectiveness of those with the presence of 10% of bentonite. This work shows that 10% (OPC + GGBFS) +?10% bentonite improved the immobilization of metallic elements and hydrocarbons, thus proving its efficiency due to its low cost.  相似文献   
7.
Ayadi  Rahma  Trabelsi  Rim  Zouari  Kamel  Saibi  Hakim  Itoi  Ryuichi  Khanfir  Hafedh 《Hydrogeology Journal》2018,26(4):983-1007

Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water–rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  相似文献   
8.
Impacts of irrigation with treated wastewater effluents on soils and groundwater aquifer in the vicinity of Sidi Abid Region (Tunisia) are evaluated. The groundwater aquifer was monitored by several piezometers, where monthly water levels were registered and groundwater salinity was evaluated. This resulted in characterizing the spatial and temporal evolution of the hydrochemical and hydrodynamic properties of the aquifer, showing thereby the impact of artificial recharge. Piezometric maps for pre-recharge and post-recharge situations were developed and a comparison study of both piezometric situations was considered. The piezometric evolution map showed a generalized rise of the piezometric level in the vicinity of the irrigation zone. The extent of recharge was shown to increase with time as the groundwater level increase, which was localized in the vicinity of the irrigation area, reached more extended zones. Several groundwater samples were withdrawn from wells and piezometers and analyzed. Examining the corresponding physical and chemical parameters showed an increase in the concentrations of nutrients (28 mg/l for NO3 and 3.97 mg/l for NH4) in the groundwater aquifer below the irrigation zone, which confirms again the infiltration of treated wastewater effluents. The evolution of soil salinity was examined through chemical analysis of soil samples. Electric conductivities of soils were generally shown to be less than 4 mS/cm while the irrigation water has an electric conductivity that may reach 6.63 mS/cm. This might be explained by the phenomenon of dilution and the capacity of soils to evacuate salts downward.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号