首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
地球物理   2篇
地质学   6篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
排序方式: 共有8条查询结果,搜索用时 279 毫秒
1
1.
The presence of underground voids has an adverse influence on the performance of shallow foundations. In this study, the bearing capacity and failure mechanism of footings placed on cohesive-frictional soils with voids are evaluated using discontinuity layout optimization. By introducing a reduction coefficient, a set of design charts that can be directly applied to the classical bearing capacity formulation is presented. The results indicate that the undrained bearing capacity with voids is sensitive to soil weight and cohesion, as both the bearing capacity and stability issues exist in the problem. The failure mechanism is directly related to a variety of soil properties, the locations of single voids, and the horizontal distance between two voids. The presence of voids has a more dominant effect on cφ soils compared to that on undrained soil. An interpretation of the critical and adverse locations for single-void and dual-void cases with various soil strengths is presented.  相似文献   
2.
Zhou  Haizuo  Zheng  Gang  Liu  Jifu  Yu  Xiaoxuan  Yang  Xinyu  Zhang  Tianqi 《Acta Geotechnica》2019,14(5):1571-1584

Rigid columns penetrating a firm underlying stratum have often been used to enhance the stability and improve the settlement of embankments over soft ground. Furthermore, an inclined underlying stratum is commonly encountered in engineering practice. This investigation experimentally and numerically studies the performance of embankments over soft ground reinforced by rigid columns with various embedment depths. In centrifuge tests, a tilting failure occurs for columns with an embedment depth Le of 2D (D is the diameter of columns), whereas the embankments remain stable for Le of 7D. This result indicates that the inclined underlying stratum weakens the restraint effect at the column base and that a greater embedment depth is required to ensure the stability of embankments. Parametric studies numerically reveal that there exists a critical embedment depth, which represents a shift in the failure mechanism. The optimum column layout is determined based on the contributions of columns in different locations beneath an embankment. Finally, the influence of the embedment depth on the distribution of the bending moment of the columns and the soil reaction are discussed.

  相似文献   
3.
Ha  Da  Zheng  Gang  Loáiciga  Hugo A.  Guo  Wei  Zhou  Haizuo  Chai  Jinchun 《Acta Geotechnica》2021,16(4):1303-1314
Acta Geotechnica - A large volume of groundwater is withdrawn annually in Tianjin Municipality, China, to meet agricultural, industrial, and municipal water uses. Groundwater overdraft in the urban...  相似文献   
4.
Zheng  Gang  He  Xiaopei  Zhou  Haizuo  Yang  Xinyu  Yu  Xiaoxuan  Zhao  Jiapeng 《Acta Geotechnica》2020,15(8):2227-2237

Excavations may cause excessive ground movements, resulting in potential damage to laterally adjacent tunnels. The aim of this investigation is to present a simple assessment technique using a multivariate adaptive regression splines (MARS) model, which can map the nonlinear interactions between the influencing factors and the maximum horizontal deformation of tunnels. A high-quality case history in Tianjin, China, is presented to illustrate the effect of excavation on the tunnel deformation and to validate the FEM. The hypothetical data produced by the FEM provide a basis for developing the proposed MARS model. Based on the proposed model, the independent and coupled effects of the input variables (i.e. the normalized buried depth of tunnels Ht/He, the normalized horizontal distance between tunnels and retaining structures Lt/He, and the maximum horizontal displacement of retaining structures, δRmax) on the tunnel response are analysed. The prediction precision and accuracy of the MARS model are validated via the artificial data and the collected case histories.

  相似文献   
5.
地铁车站与隧道连接处地震响应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
结构截面刚度突变处是地下结构抗震的薄弱部位,为研究地铁车站与隧道连接处的地震响应,本文建立有限差分数值模型,分析地震作用下车站与隧道连接处的薄弱部位、连接处附近的侧墙变形分布特征以及地表沉降分布特征,重点探究埋深、地震动特征以及周围土体刚度对连接处隧道应力的影响。结果表明:连接处端墙底部跨中、端墙洞口的顶部和底部是抗震的薄弱部位;连接处端墙存在对侧墙变形分布、地表沉降分布有一定影响;结构埋深,地震动频谱、幅值对连接处隧道应力响应有较大影响,结构周围土体的刚度在一定范围内对连接处隧道应力有较大影响。  相似文献   
6.
This study evaluates the failure modes and the bearing capacity of soft ground reinforced by a group of floating stone columns. A finite difference method was adopted to analyze the performance of reinforced ground under strip footings subjected to a vertical load. The investigation was carried out by varying the aspect ratio of the reinforced zone, the area replacement ratio, and the surface surcharge. General shear failure of the reinforced ground was investigated numerically without the surcharge. The results show the existence of an effective length of the columns for the bearing capacity factors N c and N γ. When certain surcharge was applied, the failure mode of the reinforced ground changed from the general shear failure to the block failure. The aspect ratio of the reinforced zone and the area replacement ratio also contributed to this failure mode transition. A counterintuitive trend of the bearing capacity factor N q can be justified with a shift in the critical failure mode. An upper-bound limit method based on the general shear failure mode was presented, and the results agree well with those of the previous studies of reinforced ground. Equivalent properties based on the area-weighted average of the stone columns and clay parameters were used to convert the individual column model to an equivalent area model. The numerical model produced reasonable equivalent properties. Finally, a theoretical method based on the comparison of the analytical equations for different failure modes was developed for engineering design. Good agreement was found between the theoretical and numerical results for the critical failure mode and its corresponding bearing capacity factors.  相似文献   
7.
联络通道是长距离盾构隧道结构中不可缺少的部分,常设置于两条隧道之间,用于逃生、防火及排水等。与此同时,联络通道与隧道的连接处构造复杂,空间效应明显。在地下结构截面突变处,在地震荷载作用下易产生应力集中,造成结构的破坏,从而带来不可估量的震害。基于有限差分软件FLAC3D,以天津的典型粉质黏土为例,建立双线并行隧道及联络通道的三维模型,对场地施加正弦波,分析隧道与联络通道连接处的应力和变形情况,并探讨隧道结构埋深、联络通道的直径和长度等对连接处地震响应的影响。基于Fish语言,建立能模拟不同地震波入射方向有限差分模型,计算表明不同地震波入射方向对结构连接处受力具有显著影响。  相似文献   
8.
Yu  Xiaoxuan  Zheng  Gang  Zhou  Haizuo  Chai  Jinchun 《Acta Geotechnica》2021,16(9):3005-3012
Acta Geotechnica - Prior investigations have revealed that the stress characteristics of columns at different locations beneath an embankment vary. A failed column releases stress and causes...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号