首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   7篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
Zhai  Qian  Rahardjo  Harianto  Satyanaga  Alfrendo  Dai  Guoliang 《Acta Geotechnica》2019,14(6):1977-1990
Acta Geotechnica - Many shallow foundations are constructed within the soil layer above the groundwater table, where the soil remains unsaturated, and the failure of shallow foundation is mostly...  相似文献   
3.
Zhai  Qian  Rahardjo  Harianto  Satyanaga  Alfrendo  Dai  Guoliang 《Acta Geotechnica》2020,15(12):3371-3381
Acta Geotechnica - During heavy rainfalls, the surface soil on a slope may be eroded and the erosion is much dependent on the tensile strength of soil. In addition, the tensile strength of soil is...  相似文献   
4.
ABSTRACT

This paper presents the spatial distribution, variation and trend of 5-day antecedent rainfall in Singapore based on rainfall data from 22 meteorological stations. The effect of climate was analyzed by dividing the study period into three decades i.e. Decade 1: 1982–1991, Decade 2: 1992–2001 and Decade 3: 2002–2011. Kriging interpolation was used for rainfall mapping. The results show that spatial distribution of 5-day antecedent rainfall does not coincide with that of the annual rainfall. The maximum annual rainfall occurred in the northwestern side of Singapore. On the other hand, the maximum 5-day antecedent rainfall occurred in the north and northeastern sides. The results of this study suggest that the climate change has increased the amount of 5-day antecedent rainfall quite significantly, i.e. from 420.5 (1987) to 592.9 mm (2006), thus affecting the vulnerability of the area with respect to rainfall-induced slope failure. The analyses also showed that most of slope failures were located in the north and northeast of Singapore between December and earlier March. More slope failures were observed in Decade 3 as compared to Decades 1 and 2. In other words, the analysis confirmed that 5-day antecedent rainfall had affected the slope stability in Singapore.  相似文献   
5.
Slope failures in the tropical regions, particularly Malaysia are commonly triggered by frequent rainfall. The tropical rainfall can be characterized as short and intense throughout the year, and prolonged and less intense during monsoon seasons. Under such circumstances, various rainfall patterns should be included in the analysis of rainfall-induced slope failure in the tropical regions. This paper is aimed to demonstrate a simple model for preliminary evaluation of rainfall-induced slope failure. The critical rainfall patterns for four typical types of soil were first determined. Seepage finite element analyses were conducted using the extreme rainfall of ten-year return period for Johor Bahru, Malaysia. The results showed that the ratio of rainfall intensity to soil saturated permeability (i.e., I/ksat) plays an important role in determining the critical rainfall pattern. Two critical combinations of antecedent rainfall and major rainfall, 1-day, 2-day, 3-day, 5-day, 7-day, 14-day, and 30-day antecedent rainfalls and the redistribution of the critical combination of antecedent rainfall and 1-day major rainfall were responsible for the formation of suction envelope in soil. The suction envelope, representing the worst suction distribution in soil, was used for the computation of factor of safety of soil slope through the modified infinite-slope–limit-equilibrium method. A model, PERISI, was developed based on the findings from numerical simulation. The suction envelope and factor of safety computed from the PERISI model showed good agreements with the results obtained from Seep/W and Slope/W computer programs and the results derived from the model of Rahardjo et al. developed in 1995.  相似文献   
6.
Demolition of old buildings to create space for new development resulted in the near surface soil (topsoil) to be mixed with particles derived mostly from concrete wastes. This condition could affect the infiltration capacity and surface runoff, therefore, storm-water management of the area. This paper presents results of study on the effect of concrete waste particles on the hydraulic properties and infiltration capacity of the topsoil. Laboratory tests were performed to compare the hydraulic properties of the topsoil and the mixture of topsoil and concrete particles. Laboratory infiltration column test was performed on the mixture to evaluate its infiltration capacity. Results from the laboratory tests indicated that the presence of particles from concrete waste decreased the water-holding capacity and permeability, thereby the infiltration capacity of the ground surface. The results were supported by numerical analysis performed using the same material and boundary conditions as the column test. Parametric study was performed on both the topsoil and the mixture to extend the results of infiltration test to different materials under different ranges of rainfall intensity. The parametric study showed that the presence of concrete particles increased the run-off and the effect increased as the rainfall intensity increased. Therefore, the increase in runoff coefficient should be considered for the storm-water management when the near surface soil is mixed with concrete waste.  相似文献   
7.
Geotechnical and Geological Engineering - Tropical countries like Singapore are associated with high relative humidity, high temperature, and high amount of rainfall throughout the year. Therefore,...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号