首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   2篇
地质学   4篇
自然地理   1篇
  2020年   1篇
  2008年   1篇
  2007年   1篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Abstract. The Erdenet porphyry copper deposit is one of the major mineral deposits in Mongolia. The geochemical data of granitoids acquired for the Erdenet and its surrounding areas are re-examined. The granitoids of the Erdenet deposit with hypogene type mineralization show the lowest TiO2 content. Although Ti was possibly lost through the pyritization, it is also possible that the hypogene type mineralization occurred accompanied with the most differentiated granitoids. The variation of the element contents related to the mineralization of the Erdenet deposit shows the decrease of MgO and CaO contents, rather constant K2O content, rather constant to decrease of Na2O content, with respect to the Cu contents. The rather constant Na2O in the mineralized zone is owing to the residual albite against the sericitic alteration. The granitoids of the Erdenet area show an increase of Na2O content and a decrease of K2O content with an increase of SiO2 content. This trend makes clear contrast to granitoids in the surrounding areas. The granitoids of the Erdenet area might have the adakitic nature based on the Sr and Y contents.  相似文献   
2.
To improve flood forecasting, the understanding of the atmospheric conditions associated with severe rainfall is crucial. We analysed the atmospheric conditions at Dhaka, Bangladesh, using upper-air soundings. We then compared these conditions with daily rainfall variations at Cherrapunjee, India, which is a main source of floodwater to Bangladesh, and a representative sample of exceptionally heavy rainfall events. The analysis focussed on June and July 2004. June and July are the heaviest rainfall months of the year at Cherrapunjee. July 2004 had the fourth-heaviest monthly rainfall of the past 31 years, and severe floods occurred in Bangladesh. Active rainfall periods at Cherrapunjee corresponded to “breaks” in the Indian monsoon. The monsoon trough was located over the Himalayan foothills, and strong westerly winds dominated up to 7 km at Dhaka. Near-surface wind below 1 km had southerly components, and the wind profile had an Ekman spiral structure. The results suggest that rainfall at Cherrapunjee strongly depends on the near-surface wind speed and wind direction at Dhaka. Lifting of the near-surface southerly airflow by the Meghalaya Plateau is considered to be the main contributor to severe rainfall at Cherrapunjee. High convective available potential energy (CAPE) also contributes to intense rainfall.  相似文献   
3.
Abstract: Tizapa volcanogenic massive sulfide (VMS) deposit is hosted in greenschist facies metamorphic rocks; footwall is green schist of felsic to mafic metavolcanic rocks and hanging wall is graphite schist of metasedmentary pelitic rock. Pb-Pb dating of ore samples indicates 103. 4Ma to 156. 3Ma for the age of mineralization (JICA/MMAJ, 1991).  相似文献   
4.
Flooding is one of the greatest disasters that produces strong effects on the ecosystem and livelihoods of the local population. Flood frequency is expected to increase globally making its risk assessment an urgent issue. In spring-summer 2017, an extreme flooding occurred in the Indigirka River lowland of Northeastern Siberia that inundated a large area. In this study, the extent and climatic drivers of the flooding were determined using the results of field observations, satellite images, and climate reanalysis dataset, and its possible effects on the ecosystem were discussed. In 2017, a significant lowland area of around 16,016 km2 was covered with water even in July, which was 5,217 km2 (around 4% of the total area) greater than the water-covered area in 2015 when usual hydrological condition in the area was observed. The hydrographic signature obtained for the Indigirka River water level in 2017 was unusual. Although the water level rose sharply at the end of May (which was typical for the Arctic region), it did not fall afterwards and even increased again to an annual daily maximum value in the middle of July. The climate reanalysis dataset obtained for the temporal–spatial variations of snow water equivalent, snowmelt, and runoff over the lowland revealed that a large amount of snowmelt runoff in June and July 2017 produced a large water-covered area and unusually high river water levels that lasted until summer. Snow depth from winter to spring was largest in 2017 over the period from 2009 to 2017, and the surface of the lower reach of the lowland was partially covered with snow even in the end of June due to the extreme snowfall that occurred in October 2016. Such unusual hydrological conditions waterlogged most trees over the lowland, which caused serious ecosystem devastation and changes in the material cycle.  相似文献   
5.
Monthly and daily variations in rainfall over Cherapunjee and Mawsynram on the Meghalaya plateau of northeastern India are analysed. Cherapunjee and Mawsynram are well known as two of the places with the heaviest rainfall in the world. The daily rainfall variation is attributed to the influence of synoptic scale disturbances, with a periodicity of 10–20 days, and the orographic interaction. The annual and monthly highest rainfalls over Cherapunjee during the 31 years from 1973 to 2003 were much larger than mean values.  相似文献   
6.
7.
A genetic algorithm inversion of receiver functions derived from a dense seismic network around Iwate volcano, northeastern Japan, provides the fine S wave velocity structure of the crust and uppermost mantle. Since receiver functions are insensitive to an absolute velocity, travel times of P and S waves propagating vertically from earthquakes in the subducting slab beneath the volcano are involved in the inversion. The distribution of velocity perturbations in relation to the hypocenters of the low-frequency (LF) earthquakes helps our understanding of deep magmatism beneath Iwate volcano. A high-velocity region (dVS/VS=10%) exists around the volcano at depths of 2–15 km, with the bottom depth decreasing to 11 km beneath the volcano’s summit. Just beneath the thinning high-velocity region, a low-velocity region (dVS/VS=−10%) exists at depths of 11–20 km. Intermediate-depth LF (ILF) events are distributed vertically in the high-velocity region down to the top of the low-velocity region. This distribution suggests that a magma reservoir situated in the low-velocity region supplies magma to a narrow conduit that is detectable by the hypocenters of LF earthquakes. Another broad low-velocity region (dVS/VS=−5 to −10%) occurs at depths of 17–35 km. Additional clusters of deep LF (DLF) events exist at depths of 32–37 km in the broad low-velocity zone. The DLF and ILF events are the manifestations of magma movement near the Moho discontinuity and in the conduit just beneath the volcano, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号