首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   2篇
自然地理   1篇
  2017年   1篇
  2009年   1篇
  1998年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
O. Eklund  D. Konopelko  H. Rutanen  S. Fr  jd    A. D. Shebanov 《Lithos》1998,45(1-4):87-108
At least 14 small (1–11 km across) 1.8 Ga Svecofennian post-collisional bimodal intrusions occur in southern Finland and Russian Karelia in a 600-km-long belt from the Åland Islands to the NW Lake Ladoga region. The rocks range from ultramafic, calc-alkaline, apatite-rich potassium lamprophyres to peraluminous HiBaSr granites, and form a shoshonitic series with K2O+Na2O>5%, K2O/Na2O>0.5, Al2O3>9% over a wide spectrum of SiO2 (32–78%). Although strongly enriched in all rocks, the LILE Ba and Sr and the LREE generally define a decreasing trend with increasing SiO2. Depletion is noted for HFSE Ti, Nb and Ta. Available isotopic data show overlapping values for lamprophyres and granites within separate intrusions and a cogenetic origin is thus not precluded. Initial magmas (Mg#>65) in this shoshonitic association are considered to be generated in an enriched lithospheric mantle during post-collisional uplift some 30 Ma after the regional Svecofennian metamorphic peak. However, prior to the melting episode, the lithospheric mantle was affected by carbonatite metasomatism; more extensively in the east than in the west. The melts generated in the more carbonate-rich mantle are extremely enriched in P2O54%, F12,000 ppm, LILE: Ba9000 ppm, Sr7000 ppm, LREE: La600 ppm and Ce1000 ppm. The parental magma underwent 55–60% fractionation of biotite+clinopyroxene+apatite+magnetite+sphene whereupon intermediate varieties were produced. After further fractionation, 60–80%, of K-feldspar+amphibole+plagioclase±(minor magnetite, sphene and apatite), leucosyenites and quartz-monzonites were formed. In the west, where the source was less affected by carbonatite metasomatism, calc-alkaline lamprophyres (vogesites, minettes and spessartites) and equivalent plutonic rocks (monzonites) were formed. Removal of about 50% of biotite, amphibole, plagioclase, magnetite, apatite and sphene produced peraluminous HiBaSr granites. The impact of crustal assimilation is considered to be low. At about 1.8 Ga, the post-collisional shoshonitic magmatism brought juvenile material, particularly enriched in alkalis, LILE, LREE and F, into the crust. Although areally restricted, the regional distribution of the post-collisional intrusions may indicate that larger volumes of 1.8 Ga juvenile material resides in unexposed parts of the crust.  相似文献   
2.
Novel digital data sources allow us to attain enhanced knowledge about locations and mobilities of people in space and time. Already a fast-growing body of literature demonstrates the applicability and feasibility of mobile phone-based data in social sciences for considering mobile devices as proxies for people. However, the implementation of such data imposes many theoretical and methodological challenges. One major issue is the uneven spatial resolution of mobile phone data due to the spatial configuration of mobile network base stations and its spatial interpolation. To date, different interpolation techniques are applied to transform mobile phone data into other spatial divisions. However, these do not consider the temporality and societal context that shapes the human presence and mobility in space and time. The paper aims, first, to contribute to mobile phone-based research by addressing the need to give more attention to the spatial interpolation of given data, and further by proposing a dasymetric interpolation approach to enhance the spatial accuracy of mobile phone data. Second, it contributes to population modelling research by combining spatial, temporal and volumetric dasymetric mapping and integrating it with mobile phone data. In doing so, the paper presents a generic conceptual framework of a multi-temporal function-based dasymetric (MFD) interpolation method for mobile phone data. Empirical results demonstrate how the proposed interpolation method can improve the spatial accuracy of both night-time and daytime population distributions derived from different mobile phone data sets by taking advantage of ancillary data sources. The proposed interpolation method can be applied for both location- and person-based research, and is a fruitful starting point for improving the spatial interpolation methods for mobile phone data. We share the implementation of our method in GitHub as open access Python code.  相似文献   
3.
Mafic intrusive rocks (1.79–1.78 Ga) of the Transscandinavian Igneous Belt (TIB) and the c. 1.87 Ga Hedesunda Igneous Complex in the Fennoscandian Shield of south‐central Sweden were studied using whole‐rock and isotope geochemistry. Rock types vary from gabbros/norites (and leucogabbros) to quartz diorites, with Mg# between 76 and 49, and wt% SiO2 between 43.6 and 59.7, indicating some variation in evolutionary levels and variable cumulus components. Geochemical signatures are calc‐alkaline to shoshonitic, large ion lithophile elements and light rare earth elements enriched and high‐field strength elements depleted of continental‐arc type. εNd(t) ranges between +1.0 and +2.7, and 87Sr/86Sr(t) between 0.7020 and 0.7038. There is no systematic correlation between chemical parameters and isotope ratios. These isotopic data overlap with other mafic plutonic TIB rocks; samples from the Dala Province (DP) tend to overlap with the c. 1.7 Ga basic Dala lavas of TIB at slightly elevated relative Sr/Nd ratios. With two exceptions, the εNd(t) of +1 to +2 conform to an isotopically ‘mildly depleted’ source, typical for mafic TIB rocks and many Svecofennian rocks in the region. Reported values above εNd(t) +2.0 are scarce in the TIB. Mantle sources represent depleted mantle wedge material that was enriched by fluids/melts not long before (TDM c. 2.0 Ga), that is during subduction in the preceding Svecofennian (2.0–1.87 Ga) and/or during the TIB‐0&1 event (1.85–1.78 Ga). The palaeotectonic settings inferred are active continental margins; N–S‐directed convergence at 1.87 Ga and E–W‐directed at 1.79–1.78 Ga. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号