首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
地质学   5篇
  2023年   1篇
  2022年   1篇
  2018年   2篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.

Artesian aquifers offer interesting opportunities for water supply by providing a low-vulnerability groundwater resource that is easily abstracted without any installation of pumps or power supply costs. However, hydraulic tests are challenging to perform, notably where the piezometric head is above ground level with free-flowing wells not equipped with valves and open for years. This paper describes a low-cost, easy to reproduce and adaptable device, the free-flowing artesian well device (FFAWD), which is mainly designed with a set of PVC tubes equipped with a pressure probe and a valve. This device is used to perform hydraulic tests on free-flowing artesian wells, to measure the piezometric head of the aquifer and to compute its transmissivity. The practical use of the FFAWD is described and a method is proposed to compute the piezometric head and the transmissivity of the aquifer from this data set (free-flowing well discharge and pressure increase measurements) with any adapted analytical solution, using the Houpeurt-Pouchan method. Artefacts such as post-production effects, surge effects, and the impact of a leaky well are identified to avoid any misinterpretation. The FFAWD was applied to the volcano-sedimentary artesian plain of Pasuruan (Indonesia). The advantages and limitations of using the device, along with the interpretation methodology, are also discussed.

  相似文献   
3.
High rainfall in equatorial regions leads to high groundwater levels or pore pressures and a high risk of landslides on the slopes of open pit mines, hindering mining operations. To lower the groundwater level surrounding a slope, a drainage system is needed. A drain hole is a part of a drainage system which utilises gravity to drain groundwater. Drain hole installation in fractured media requires the determination of the number, location, length and other parameters of the drain holes. Drain holes are frequently installed in uniform configurations or in layouts with uniform spacing, which are often ineffective and uneconomical, as some holes are not in the right positions or directions within the fractured media. This paper attempts to develop a conceptual model of an optimised configuration of drain holes by setting the drain hole parameters, or decision variables, such as number, location and length, in such a way that it produces the most effective and efficient outcome by maximising groundwater lowering and minimising cost. The optimisation is supported by the multi-stage genetic algorithm method in combination with a groundwater simulator, hereafter called the multi-stage GWSim-GA SO method. The procedure of the conceptual model will be further developed and used as a framework in the groundwater management of fractured media of an open pit mine slope.  相似文献   
4.
5.
To improve the stability and efficiency of explicit technique, one proposed method is to use an unconditionally stable alternating direction explicit (ADE) scheme. However, the standard ADE scheme is only moderately accurate and restricted to uniform grids. This paper derives a novel high‐order ADE scheme capable of solving the fluid diffusion equation in non‐uniform grids. The new scheme is derived by performing a fourth‐order finite difference approximation to the spatial derivatives of the diffusion equation in non‐uniform grid. The implicit Crank‐Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps, giving rise to a new high‐order ADE scheme. Because the new scheme can be potentially applied in coupled hydro‐mechanical (H‐M) simulation, the pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer program Fast Lagrangian Analysis of Continua. This coupling procedure is called the sequentially explicit coupling technique based on the fourth‐order ADE scheme (SEA‐4). Verifications of well‐known consolidation problems showed that the new ADE scheme and SEA‐4 can reduce computer runtime by 46% to 75% to that of Fast Lagrangian Analysis of Continua's basic scheme. At the same time, the techniques still maintained average percentage error of 1.6% to 3.5% for pore pressure and 0.2% to 1.5% for displacement solutions and were still accurate under typical grid non‐uniformities. This result suggests that the new high‐order ADE scheme can provide an efficient explicit technique for solving the flow equation of a coupled H‐M problem, which will be beneficial for large‐scale and long‐term H‐M problems in geoengineering.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号