首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
地球物理   3篇
地质学   11篇
海洋学   3篇
天文学   4篇
自然地理   2篇
  2023年   1篇
  2017年   2篇
  2012年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  1997年   2篇
  1995年   3篇
  1994年   2篇
  1983年   1篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
Mineral matter in three naturally weathered coals from Pennsylvania strip mines and in two laboratory-oxidized coals has been characterized by 57Fe Mössbauer spectroscopy, scanning electron microscopy and other techniques to determine mineralogical trasnformations that occur in coals during weathering. Pyrite was found to be the most readily oxidized mineral, forming a variety of iron sulfates initially and geethite eventually. The iron sulfates formed were different in the two laboratory-oxidized coals, despite identical oxidation treatments. Calcite disappeared from one calcite-rich coal with increasing oxidation, but was not replaced by an equivalent amount of gypsum. A severely weathered strip-mine coal was enriched in calcium, which was dispersed through the oxidized macerals. Extended X-ray absorption fine-structure spectroscopy indicated that this dispersed calcium was most likely present as salts of carboxylic acids. Siderite was suprisingly resistant to oxidation at room temperature. Less direct evidence indicates that clay minerals also take part in the alteration to some extent.The coals oxidized in the laboratory showed alteration behavior that differed in a number of respects from that of the strip-mine coals. For example, iron sulfates were much less common in the latter coals; also, the formation of geothite appeared to be controlled to a large extent by the pyrite particle size in the strip-mine coals, but not in the laboratory-oxidized coals.The oxidation of an individual pyrite grain is not only a function of general conditions (temperature, humidity, oxygen partial pressure), but also the immediate local (< 1 mm) chemistry, as a variety of iron sulfates were observed in the coals, often in close proximity. Also, assemblages of gypsum and goethite were observed in otherwise slightly oxidized coal, which indicates that the alteration of pyrite and calcite, when in close contact, proceeds most rapidly.  相似文献   
2.
Overlap lengths, separations and throw gradients were measured on 132 relay zones recorded on coal-mine plans. Throws on the relay-bounding fault traces are usually ≤ 2 m and individual structures are recorded on only one seam. Throw gradients associated with relay zones are not always higher than on single faults, but asymmetry of throw profiles is diagnostic of relay zones. Bed geometries around larger faults in opencast mines are used to assess the displacement accommodated by shear in the vertical plane normal to the faults and displacement transfer accommodated by shear in the fault-parallel plane. Three-dimensional structure is defined for two relay zones, each recorded on five seam plans. These relay zones are effectively holes through the fault surfaces and overlap occurs between salients or lobes of the parent fault surfaces. Lobes initially terminated at tip-lines but, as the faults grew, gradually rejoined the main fault surfaces along branch lines. This type of relay zone originates by bifurcation of a single fault surface at a locally retarded tip-line and is an almost inevitable result of a tip-line irregularity.  相似文献   
3.
Mössbauer spectroscopy of three suites of oxidized coals shows that the transformation of pyrite to FeOOH correlates with other parameters of oxidation. As pyrite is very common in coals and the transformation to FeOOH is sensitive to small degrees of oxidation, the Mössbauer technique shows considerable promise as a means for the detection of coal oxidation.  相似文献   
4.
The redox conditions during frictional melting provide information on the physical and chemical conditions during seismic slip in the crust. Here we examine frictional melts from five localities by analyzing host rocks and corresponding pseudotachylytes using Mössbauer spectroscopy. The faults examined are located at South Mountain, Arizona; Fort Foster, Maine (two localities); Long Ridge fault, North Carolina; and the Homestake shear zone, Colorado. The main iron-bearing phases in the pseudotachylytes are phyllosilicates (biotite, muscovite and clays) and iron oxides (magnetite and hematite) and minor pyrite. The ferrous/ferric ratios of the phyllosilicates in the host rocks are the same as those in the pseudotachylytes, except for the hematite-bearing pseudotachylyte from the Long Ridge fault, which is more oxidized. The magnetites in the host rocks and the corresponding pseudotachylytes have different ferric and ferrous iron distributions, which is attributed to different cation chemistry, rather than redox conditions. With the exception of the South Mountain locality, the ferric/ferrous ratios of the micas are interpreted to record the primary redox state of the pseudotachylyte melt as the calculated oxygen fugacities are consistent with magnetite and hematite equilibria. Pyrite-bearing pseudotachylytes plot ~0–1 log10 units above the fayalite-magnetite-quartz (FMQ) buffer. Magnetite-bearing pseudotachylytes plot ~2–4 log10 units above the FMQ buffer, and hematite-bearing pseudotachylytes plot 3.5 log10 units above the hematite-magnetite (HM) buffer. Hematite-bearing pseudotachylytes, together with previous oxygen isotope data, are inferred to represent melting in the presence of externally derived pressurized water. Other localities are inferred to represent melting under rock-buffered, closed system, conditions. If the localities studied are representative of seismogenic faulting, the calculated oxygen fugacities indicate that, in the system C–O–H–S, H2O and CO2 should be the dominant fluid species. This is the first detailed study of the redox state of pseudotachylytes.  相似文献   
5.
6.
From the results of a parameter optimization process based on a “minimum feasible volume” criterion, it is shown that the optimum shape for a transatlantic, deep-diving, autonomous submersible is a “low drag” hull shape with a displaced volume of 4.4 m3, a length of 5.97 m and a maximum diameter of 1.33 m. Calculations show that a vehicle of these dimensions, travelling in a minimum drag “cruise” configuration at a depth of 3000 m, say, and at a velocity of 2.5 m/sec could have a maximum range of 7000 km provided the “hotel” power consumption is kept low.  相似文献   
7.
Hydrogeology Journal - Groundwater sustainability is challenged by the difference between legal and scientific understanding of groundwater, as well as the lack of focused attention to regulatory...  相似文献   
8.
Our understanding of the late evolution of intermediate mass stars (∼1–8M) through the planetary nebula phase is undergoing major developments. Observations at infrared and millimeter wavelengths have revealed important components of neutral gas and dust in the nebulae that directly trace their formation from mass-loss on the Asymptotic Giant Branch. At the same time, high resolution imaging, especially with the Hubble Space Telescope, has revealed a surprising array of structures in the nebulae: multiple arcs, tori, jets, and myriads of small scale fragments. None of these are fully understood, and all involve the neutral gas component. This paper highlights recent observations of these structures and discusses the open questions, with an emphasis on those areas where observations with ALMA are likely to make important contributions.  相似文献   
9.
Tissues and organs of the flounder collected from the Severn at Oldbury, in the course of a year long survey, have been analysed for lead, cadmium and zinc. Differences have been noted in the level of zinc deposition in the various age groups of this teleost, particularly in autumn and summer. In an attempt to explain these results, the feeding habits of the flounder have been studied and heavy metal analyses conducted on some of its principal foodstuffs and related animals.  相似文献   
10.
Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32–1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26–0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O2 atmosphere; (3) room atmosphere (relative humidity ∼20–60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and 57Fe Mössbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. 57Fe Mössbauer spectroscopy also shows a much greater proportion of Fe3+ forms (jarosite, Fe3+ sulfate, FeOOH) for samples stored under wet conditions, but much less difference among samples stored under dry conditions in different atmospheres. The air-wet experiments show evidence of pyrite re-precipitation from soluble ferric sulfates, with As retention in the jarosite phase. Extents of As and Fe oxidation were similar for samples having differing As substitution in pyrite, suggesting that environmental conditions outweigh the composition and amount of pyrite as factors influencing the oxidation rate of Fe sulfides in coal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号