首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  国内免费   1篇
地球物理   9篇
地质学   17篇
海洋学   1篇
天文学   3篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2018年   4篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  1998年   2篇
排序方式: 共有31条查询结果,搜索用时 93 毫秒
1.
Rainfall is the main source of groundwater recharge in the Gaza Strip area in Palestine. The area is located in the semi-arid zone and there is no source of recharge other than rainfall. Estimation of groundwater recharge from rainfall is not an easy task since it depends on many uncertain parameters. The cumulative rainfall departure (CRD) method, which depends on the water balance principle, was used in this study to estimate the net groundwater recharge from rainfall. This method does not require much data as is the case with other classical recharge estimation methods. The CRD method was carried out using optimisation approach to minimise the root mean square error (RMSE) between the measured and the simulated groundwater head. The results of this method were compared with the results of other recharge estimation methods from literature. It was found that the results of the CRD method are very close to the results of the other methods, but with less data requirements and greater ease of application. Based on the CRD method, the annual amount of groundwater recharge from rainfall in the Gaza Strip is about 43 million m3. An erratum to this article can be found at  相似文献   
2.
In recent years,landslide susceptibility mapping has substantially improved with advances in machine learning.However,there are still challenges remain in landslide mapping due to the availability of limited inventory data.In this paper,a novel method that improves the performance of machine learning techniques is presented.The proposed method creates synthetic inventory data using Generative Adversarial Networks(GANs)for improving the prediction of landslides.In this research,landslide inventory data of 156 landslide locations were identified in Cameron Highlands,Malaysia,taken from previous projects the authors worked on.Elevation,slope,aspect,plan curvature,profile curvature,total curvature,lithology,land use and land cover(LULC),distance to the road,distance to the river,stream power index(SPI),sediment transport index(STI),terrain roughness index(TRI),topographic wetness index(TWI)and vegetation density are geo-environmental factors considered in this study based on suggestions from previous works on Cameron Highlands.To show the capability of GANs in improving landslide prediction models,this study tests the proposed GAN model with benchmark models namely Artificial Neural Network(ANN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF)and Bagging ensemble models with ANN and SVM models.These models were validated using the area under the receiver operating characteristic curve(AUROC).The DT,RF,SVM,ANN and Bagging ensemble could achieve the AUROC values of(0.90,0.94,0.86,0.69 and 0.82)for the training;and the AUROC of(0.76,0.81,0.85,0.72 and 0.75)for the test,subsequently.When using additional samples,the same models achieved the AUROC values of(0.92,0.94,0.88,0.75 and 0.84)for the training and(0.78,0.82,0.82,0.78 and 0.80)for the test,respectively.Using the additional samples improved the test accuracy of all the models except SVM.As a result,in data-scarce environments,this research showed that utilizing GANs to generate supplementary samples is promising because it can improve the predictive capability of common landslide prediction models.  相似文献   
3.
Three analyitcal solutions of saltwater intrusion under uncertain hydrologic, hydrogeologic, and pumping conditions are presented. These solutions extends the existing deterministic, sharp interface solutions to stochastic ones. The randomness is represented in terms of statistical measures of mean, standard deviation and covariance. The analysis is based on perturbation using Taylor series expansion. Simulations based on probability distribution are conducted for verification.  相似文献   
4.
5.
Optimal and sustainable extraction of groundwater in coastal aquifers   总被引:1,自引:0,他引:1  
Four examples are investigated for the optimal and sustainable extraction of groundwater from a coastal aquifer under the threat of seawater intrusion. The objectives and constraints of these management scenarios include maximizing the total volume of water pumped, maximizing the profit of selling water, minimizing the operational and water treatment costs, minimizing the salt concentration of the pumped water, and controlling the drawdown limits. The physical model is based on the density-dependent advective-dispersive solute transport model. Genetic algorithm is used as the optimization tool. The models are tested on a hypothetical confined aquifer with four pumping wells located at various depths. These solutions establish the feasibility of simulating various management scenarios under complex three-dimensional flow and transport processes in coastal aquifers for the optimal and sustainable use of groundwater.  相似文献   
6.
A field study evaluating wetted radius (Wr), downward depth (Dd), and upward movement (Um) under different emitter discharges and lateral depths was conducted. Four emitter discharges (2, 4, 8, and 16 L/h) and four lateral depths (0, 10, 20, and 30 cm) were tested in a clay loam soil. Relationships were found between the emitter discharge and lateral depth versus Wr, Dd, and Um. Wetting area at the surface occurs under different emitter discharges and lateral depths except at 30 cm lateral depth. At lateral depth of 0 and 10 cm, Wr and emitter discharge were positively correlated. The Dd was not affected by emitter discharge except for laterals installed at 20 cm depth. At 30 cm lateral depth, the correlations between each of Wr, Um, and Dd with emitter discharge were poor. The ratios of Wr/Dd and Um/Dd, with respect to emitter position, were less than unity over different emitter discharges and lateral depths. These results shed some light on the design of subsurface drip irrigation scheme so that the spacing between emitters should be determined based on the lateral depths and discharge of emitters. Evaporation losses were negligible for the 30‐cm‐lateral depth since the upward moisture movement has not reached the soil surface area at all discharge rates tested in the study.  相似文献   
7.
Eight selected heavy metals and phosphorus (Fe, Zn, Pb, Cu, Cr, Cd, Ni and P) were analyzed in the dust fall samples collected from the surrounding areas adjacent to Al-Hisa phosphate mine central Jordan during summer 2008. The chemical analysis was done using the ICP-AES, after being digested with (HNO3/HCl/HF) acid mixture, beside the identification of their mineral constituents using the XRD. Moreover, the particulate matter (PM) size was investigated and divided into four fractions (PM2.5, PM2.5–10, PMC10–100 and PM>100). The PM10–PM100 were found to be the most abundant in the local atmosphere followed by PM2.5–PM10, while the respirable fraction (PM2.5) and giant fraction (PM>100) showed lower levels. The studied samples contain less PM2.5 and PM10 particulates (9.39 and 28.67), respectively, than samples located far from the mine area (blank samples) (17.32 and 51.7) for PM2.5 and PM10, respectively. The meteorological effects, mainly the prevailing wind direction beside the distance to emission sources affect the distribution of dust particle sizes. Heavy metal contents in studied samples are similar to some extent to those found in Isa Town (Bahraian), which related to similar arid and low precipitation climatic conditions. The effect of phosphate mining activities was obvious as indicated from the presence of apatite as the main mineral phase and the higher P contents. Moreover, the studied samples contain higher Zn, Ni, Cu and to lesser extent Cr than blank samples. They exhibited a significant positive correlation with P, as they are usually associated with the phosphate rocks.  相似文献   
8.
Using a new approach, we have obtained a formula for calculating the rotation period and radius of planets. In the ordinary gravitomagnetism the gravitational spin (S) orbit (L) coupling, $\vec{L}\cdot\vec{S}\propto L^{2}$ , while our model predicts that $\vec{L}\cdot\vec{S}\propto\frac{m}{M}L^{2}$ , where M and m are the central and orbiting masses, respectively. Hence, planets during their evolution exchange L and S until they reach a final stability at which MSmL, or $S\propto\frac{m^{2}}{v}$ , where v is the orbital velocity of the planet. Rotational properties of our planetary system and exoplanets are in agreement with our predictions. The radius (R) and rotational period (D) of tidally locked planet at a distance a from its star, are related by, $D^{2}\propto\sqrt{\frac{M}{m^{3}}}R^{3}$ and that $R\propto\sqrt{\frac {m}{M}}a$ .  相似文献   
9.
The first order reliability method (FORM) has been widely used in probabilistic modelling of groundwater problems. The FORM approach requires an iterative optimization procedure to find out the system failure point (the most probable point).The advantages of this approach are that it does not require many computations in comparison with other methods when applied to simple problems, and it produces reasonably accurate results. However, it has been found that the computations of FORM can equal or exceed that of other methods in case of large number of variables.In this paper, a new implementation of FORM was proposed with more efficiency and accuracy than the traditional FORM method. In the proposed approach, automatic differentiation is used to obtain the gradient vector of the limit state function, which is required by FORM, instead of using finite difference estimation. This way, the first order derivative was obtained with a very good accuracy, and with less computational effort. Based on the obtained results, it is found that the proposed implementation of FORM is a very good tool for probabilistic risk assessment and uncertainty analysis in groundwater problems.  相似文献   
10.
Three analyitcal solutions of saltwater intrusion under uncertain hydrologic, hydrogeologic, and pumping conditions are presented. These solutions extends the existing deterministic, sharp interface solutions to stochastic ones. The randomness is represented in terms of statistical measures of mean, standard deviation and covariance. The analysis is based on perturbation using Taylor series expansion. Simulations based on probability distribution are conducted for verification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号