首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
地质学   2篇
自然地理   1篇
  2016年   1篇
  2013年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Ozone is one of the most significant secondary pollutants with numerous negative effects on human health and environment including plants and vegetation. Therefore, more effort is made recently by governments and associations to predict ozone concentrations which could help in establishing better plans and regulation for environment protection. In this study, we use two Artificial Neural Network based approaches (MPL and RBF) to develop, for the first time, accurate ozone prediction models, one for urban and another one for rural area in the eastern part of Croatia. The evaluation of actual against the predicted ozone concentrations revealed that MLP and RBF models are very competitive for the training and testing data in the case of Kopa?ki Rit area whereas in the case of Osijek city, MLP shows better evaluation results with 9% improvement in the correlation coefficient. Furthermore, subsequent feature selection process has improved the prediction power of RBF network.  相似文献   
2.
3.
Ages of six volcanic and plutonic rocks on Barton Peninsula, King George Island, were determined using 40Ar/39Ar and K-Ar isotopic systems. The 40Ar/39Ar and K-Ar ages of basaltic andesite and diorite range from 48 My to 74 My and systematically decrease toward the upper stratigraphic section. Two specimens of basaltic andesite which occur in the lowermost sequence of the peninsula, however, apparently define two distinct plateau ages of 52-53 My and 119-120 My. The latter is interpreted to represent the primary cooling age of basaltic andesite, whereas the former is interpreted as the thermally-reset age caused by the intrusion of Tertiary granitic pluton. The isochron ages calculated from the isotope correlation diagram corroborate our interpretation based on the apparent plateau ages. It is therefore likely that volcanism was active during the Early Cretaceous on Barton Peninsula. When the K-Ar ages of previous studies are taken into account with our result, the ages of basaltic andesite in the northern part of the Barton Peninsula are significantly older than those in the southern part. Across the north-west-south-east trending Barton fault bounding the two parts, there are significant differences in geochronologic and geologic aspects.  相似文献   
4.
SEONG HEE  CHOI  JONG IK  LEE  CHUNG-HWA  PARK  JACQUES  MOUTTE 《Island Arc》2002,11(4):221-235
Abstract   Ultramafic xenoliths in alkali basalts from Jeju Island, Korea, are mostly spinel lherzolites with subordinate amounts of spinel harzburgites and pyroxenites. The compositions of major oxides and compatible to moderately incompatible elements of the Jeju peridotite xenoliths suggest that they are residues after various extents of melting. The estimated degrees of partial melting from compositionally homogeneous and unfractionated mantle to form the residual xenoliths reach 30%. However, their complex patterns of chondrite-normalized rare earth element, from light rare earth element (LREE)-depleted through spoon-shaped to LREE-enriched, reflect an additional process. Metasomatism by a small amount of melt/fluid enriched in LREE followed the former melt removal, which resulted in the enrichment of the incompatible trace elements. Sr and Nd isotopic ratios of the Jeju xenoliths display a wide scatter from depleted mid-oceanic ridge basalt (MORB)-like to near bulk-earth estimates along the MORB–oceanic island basalt (OIB) mantle array. The varieties in modal proportions of minerals, (La/Yb)N ratio and Sr-Nd isotopes for the xenoliths demonstrate that the lithospheric mantle beneath Jeju Island is heterogeneous. The heterogeneity is a probable result of its long-term growth and enrichment history.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号