首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   5篇
自然地理   2篇
  1998年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有7条查询结果,搜索用时 311 毫秒
1
1.
2.
Studies of a deep high-resolution reflection seismic profile through the eastern North Sea basin show that at least four erosional phases have affected the area during the Saalian, Weichselian and Holocene. Foraminiferal investigations of five boreholes make it possible to date the erosional events. When looking at the restricted area of this study, the deep incised valleys appear to have developed during sea-level fall and lowstand as the Quaternary ice sheets were established. Further erosion took place during the deglaciation of the area and the valleys were further deepened when used as drainage paths. The oldest erosional phase recognized from the seismic profiles is interpreted to be of Saalian age. Two later erosive phases were associated with intra-Weichselian glacial advances. The uppermost erosive surface represents river valleys at the transition from the Weichselian glacial to the Holocene.  相似文献   
3.
The paper is a study of vegetation exploitation and the effect of food availability on the diet and behaviour in barnacle geese breeding at Storholmen, Svalbard. Detailed vegetation mapping was used to estimate the availability of food to individual pairs of geese. Diet composition was assessed through analysis of plant fragments in droppings. The behaviour of geese in relation to snowmelt patterns was recorded. Most vegetation types were exploited by the geese either for feeding or as nest substrate. Nest density was highest and territories were smallest on early, snow-free ridges, although late breeding individuals also nested in moss tundra vegetation. Most geese pairs exploited a mosaic of vegetation types in their territories, which extended the feeding period when plants were nutritionally most profitable to the geese. Territory size increased with decreasing density of the highest preferred food plants. Female geese preferred plants with high nutrient quality, and the diet during incubation consisted of 41% flowers of forbs, 19% grasses, 6% leaves and buds of forbs, and 34% mosses. When the availability of grasses was <5%, geese switched to a diet dominated by the abundant, but nutrient-poor, mosses. The nutrient-poor diet resulted in more time off the nest and less time being alert or searching for food during feeding bouts. Because nests are exposed to predators when females feed or search for food, a low availability of nutrient-rich food within the territory can affect hatching success.  相似文献   
4.
Early Tertiary eclogite facies metamorphism in the Monviso Ophiolite   总被引:2,自引:0,他引:2  
Although crucial for the construction of tectonic models of the Alps the timing of high pressure metamorphism is still poorly determined and controversial. It is likely to vary from one tectonic unit to another depending on when each became involved in subduction. This in turn relates to palaeogeographic position with respect to the active ocean basin. Well defined, reliable geochronological data are too few to test this hypothesis. This paper extends the database by determining Sm–Nd mineral isochrons on two samples from the Monviso Ophiolite in the Piemonte Zone, carefully selected to minimize the problems of Sm–Nd dating of eclogites encountered elsewhere in the Alps. The dated samples have eclogite facies mineral assemblages typical of the Lago Superiore unit of the ophiolite; mineral compositions are similar to previously reported samples and indicate pressures of around 2  GPa and temperatures of 400–500  °C. Sm–Nd isochron ages of 60±12 and 62±9  Ma are defined by garnet and clinopyroxene, while the Rb–Sr age on phengite which is part of the high- P assemblage is 40±1  Ma. The new data fit an emerging pattern of ages in which high- P metamorphism in the oceanic realm is Early Tertiary, with slightly older ages in the overlying Sesia Zone and younger, Oligocene ages in the underlying internal basement massifs which only became involved in subduction when closure of the Piemont ocean was complete.  相似文献   
5.
A complex of crustally derived leucogranitic sills emplacedinto sillimanite-grade psammites in the upper Langtang Valleyof northern Nepal forms part of the Miocene High Himalayan graniteassociation. A series of post-tectonic, subvertical leucograniticdykes intrude the underlying migmatites, providing possiblefeeders to the main granite sills. The leucogranite is peraluminous and alkali-rich, and can besubdivided into a muscovite–biotite and a tourmaline–muscovitefacies. Phase relations suggest that the tourmaline leucogranitescrystallized from a water-undersaturated magma of minimum-meltcomposition at pressures around 3–4 kbar. Potential metasedimentaryprotoliths include a substantial anatectic migmatite complexand a lower-grade mica schist sequence. Isotopic constraintspreclude the migmatites as a source of the granitic melts, whereastrace-element modelling of LILEs (Rb, Sr, and Ba), togetherwith the Nd and Sr isotopic signatures of potential protoliths,strongly suggest that the tourmaline-bearing leucogranites havebeen generated by fluid-absent partial melting of the muscovite-richschists. However, REE and HFSE distributions cannot be reconciledwith equilibrium melting from such a source. Systematic covariationsbetween Rb, Sr, and Ba can be explained by variations in protolithmineralogy and PT–aH2O. Tourmaline leucogranites with high Rb/Sr ratios represent low-fraction-melts(F{small tilde} 12%) efficiently extracted from their protolithsunder conditions of low water activity, whereas the heterogeneoustwo-mica granites may result from melting under somewhat higheraH2O conditions. The segregation of low-degree melts from sourcewas probably by deformation-enhanced intergranular flow andmagma fracturing, with the mechanisms of migration and emplacementcontrolled by variations in the uppercrustal stress regime duringlate–orogenic extensional collapse of the thickened crust.  相似文献   
6.
The High Himalayan Crystalline Sequence in north-central Nepal is a 15-km-thick pile of metasediments that is bound by the Main Central Thrust to the south and a normal fault to the north. The Langtang section through the metasediments shows an apparent inversion of metamorphic isograds with high-P, kyanite-grade rocks exposed beneath low-P, sillimanite-grade rocks. Textural evidence confirms that the observed inversion is a result of a polyphase metamorphic history and phase equilibria studies indicate that thermal decoupling has occurred within a mechanically coherent section of crust. Rocks now exposed at the base of the High Himalayan thrust sheet underwent Barrovian regional metamorphism (M1) prior to 34 Ma in the early stages of the Himalayan orogeny, recording metamorphic conditions of T= 710 ± 30° C, P= 9 ± 1 kbar. After the activation of the Main Central Thrust, which emplaced these metapelites southwards onto the lower grade Lesser Himalayan formations, the upper part of the thrust sheet was overprinted by a second heating event (M2), resulting in sillimanite-grade metamorphism and anatexis of metapelites at T= 760 ± 30° C, P= 5.8 ± 0.4 kbar between 17 and 20 Ma. Crustally derived, leucogranite magmas have been emplaced into low-grade Tethyan sediments on the hangingwall of the normal fault that bounds the northern limit of the metapelitic sequence. The cause of the selective heating of the upper section of the metasediments during M2 cannot be reconciled with either post-thrusting thermal relaxation or advection models. The cause of M2 remains problematical but it is suggested that heat focusing has occurred at the top of the High Himalayan Crystalline Sequence as a result of movement on the normal fault blanketing metapelites of high heat productivity with low-grade sediments of low thermal conductivity. This model implies that the normal fault was active before M2, consistent with decompression textures that formed during, or shortly after, sillimanite-grade metamorphism.  相似文献   
7.
The Peripheral Schieferhülle of the Tauern Window of the Eastern Alps represents post-Hercynian Penninic cover sequences and preserves a record of metamorphism in the Alpine orogeny, without the inherited remnants of Hercynian events that are retained in basement rocks. The temperature-time-deformation history of rocks at the lower levels of these cover sequences have been investigated by geochronological and petrographic study of units whose P-T evolution and structural setting are already well understood. The Eclogite Zone of the central Tauern formed from protoliths with Penninic cover affinities, and suffered early Alpine eclogite facies metamorphism before tectonic interposition between basement and cover. It then shared a common metamorphic history with these units, experiencing blueschist facies and subsequent greenschist facies conditions in the Alpine orogeny. The greenschist facies phase, associated with penetrative deformation in the cover and the influx of aqueous fluids, reset Sr isotopes in metasediments throughout the eclogite zone and cover schists, recording deformation and peak metamorphism at 28-30 Ma. The Peripheral Schieferhülle of the south-east Tauern Window yields Rb-Sr white mica ages which can be tied to the structural evolution of the metamorphic pile. Early prograde fabrics pre-date 31 Ma, and were reworked by the formation of the large north-east vergent Sonnblick fold structure at 28 Ma. Peak metamorphism post-dated this deformation, but by contrast to the equivalent levels in the central Tauern, peak metamorphic conditions did not lead to widespread homogenization of the Sr isotopes. Localized deformation continued into the cooling path until at least 23 Ma, partially or wholly resetting Sr white mica ages in some samples. These isotopic ages may be integrated with structural data in regional tectonic models, and may constrain changes in the style of crustal deformation and plate interaction. However, such interpretations must accommodate the demonstrable variation in thermal histories over small distances.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号