首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
测绘学   1篇
地质学   1篇
自然地理   1篇
  2022年   1篇
  2019年   1篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
Soil moisture estimation from satellite earth observation has emerged effectively advantageous due to the high temporal resolution, spatial resolution, coverage, and processing convenience it affords. In this paper, we present a study carried out to estimate soil moisture level at every location within Enugu State Nigeria from satellite earth observation. Comparative analysis of multiple indices for soil moisture estimation was carried out with a view to evaluating the robustness, correlation, appropriateness and accuracy of the indices in estimating the spatial distribution of soil moisture level in Enugu State. Results were correlated and validated with In-Situ soil moisture observations from multi-sample points. To achieve this, the Topographic Wetness Index (TWI), based on digital elevation data, the Temperature Vegetation Dryness Index (TVDI) and an improved TVDI (iTVDI) incorporating air temperature and a Digital Elevation Model (DEM) were calculated from ASTER global DEM and Landsat images. Possible dependencies of the indices on land cover type, topography, and precipitation were explored. In-Situ soil moisture data were used to validate the derived indices. The results showed that there was a positive significant relationship between iTVDI versus TVDI (R = 0.53, P value < 0.05), while in iTVDI versus TWI (R = 0.00, P value > 0.05) and TVDI versus TWI (R = ?0.01, P value > 0.05) no significant relationship existed. There was a strong relationship between iTVDI and topography, land cover type, and precipitation than other indices (TVDI, TWI). In situ measured soil moisture values showed negative significant relationship with TVDI (R = ?0.52, P value < 0.05) and iTVDI (R = ?0.63, P value < 0.05) but not with TWI (R = ?0.10, P value > 0.05). The iTVDI outperformed the other two index; having a stronger relationship with topography, precipitation, land cover classes and soil moisture. It concludes that although iTVDI outperformed other indices (TVDI, TWI) in soil moisture estimation, the decision of which index to apply is dependent on available data, the intent of usage and spatial scale.  相似文献   
2.
Kuang  Du-Min  Long  Zhi-Lin  Ogwu  Ikechukwu  Chen  Zhuo 《Acta Geotechnica》2022,17(7):2751-2764

An approach for particle breakage simulation based on the framework of discrete element method was proposed in the current study. Convex polyhedron blocks were adopted as elementary particles for the complex particle shapes, and the variability of particle breakage strength is modeled using the invertible function method. Additionally, the traditional modified “Brazilian” criterion was adopted as the breakage criterion. Under the assumption that the eventual fractures within a particle can be determined according to the contact points and the centroid of the particle, once a target particle fulfilled the breakage criterion, it was cut into several fragments by a series of virtual cutting faces, which are consistent with the eventual fractures. With this, the production of local stress and the non-conservation of mass and volume can be avoided. A pre-defined fragmentation mode was also unnecessary for this approach. A series of numerical triaxial tests adopting this new presented approach was then conducted according to the configurations reported in the literature and comparisons made with experimental results. It revealed that while the presented approach is capable of reproducing the macroscopic shear responses and particle breakage characteristics of breakable particle assemblies, some fragmentation modes of particles such as surface grinding and corner abrasion cannot be captured using this approach, presenting an area for future investigation.

  相似文献   
3.
Modelling topological relationships between places and events is challenging especially because these relationships are dynamic, and their evolutionary analysis relies on the explanatory power of representing their interactions across different temporal resolutions. In this paper, we introduce the Space-Time Varying Graph (STVG) based on the whole graph approach that combines directed and bipartite subgraphs with a time-tree for representing the complex interaction between places and events across time. We demonstrate how the proposed STVG can be exploited to identify and extract evolutionary patterns of traffic accidents using graph metrics, ad-hoc graph queries and clustering algorithms. The results reveal evolutionary patterns that uncover the places with high incidence of accidents over different time resolutions, reveal the main reasons why the traffic accidents have occurred, and disclose evolving communities of densely connected traffic accidents over time.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号