首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   3篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
Mathematical Geosciences - This paper presents a method for tetrahedral mesh generation for subsurface reservoir structural modeling based on sequentially cutting an input tetrahedral grid with...  相似文献   
2.
Incorporating prior geological knowledge in geophysical process models often meets practical meshing challenges and raises the question of how much detail is to be included in the geometric model. We introduce a strategy to automatically repair and simplify geological maps, geological cross-sections and the associated meshes while preserving elementary consistency rules. To identify features breaking validity and/or the thin features potentially problematic when generating a mesh, we associate an exclusion zone with each model feature (horizon, fault). When these zones overlap, both the connectivity and the geometry of the geological layers are automatically modified. The output model enforces specific practical quality criteria on the model topology and geometry that facilitates the generation of a mesh with lower bounds on minimum angles and minimum local entity sizes. Our strategy is demonstrated on an invalid geological cross-section from a real-case study in the Lorraine coal basin. We further explore the impacts of the model modifications on wave propagation simulation. We show that the differences on the seismograms due to model simplifications are relatively small if the magnitude of simplifications is adapted to the physical problem parameters.  相似文献   
3.

We introduce a new method for implicit structural modeling. The main developments in this paper are the new regularization operators we propose by extending inherent properties of the classic one-dimensional discrete second derivative operator to higher dimensions. The proposed regularization operators discretize naturally on the Cartesian grid using finite differences, owing to the highly symmetric nature of the Cartesian grid. Furthermore, the proposed regularization operators do not require any special treatment on boundary nodes, and their generalization to higher dimensions is straightforward. As a result, the proposed method has the advantage of being simple to implement. Numerical examples show that the proposed method is robust and numerically efficient.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号