首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   1篇
地质学   7篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1974年   1篇
排序方式: 共有8条查询结果,搜索用时 93 毫秒
1
1.
Both the mineralogy and facies of lacustrine bio‐induced carbonates are controlled largely by hydrological factors that are highly dependent upon climatic influence. As such they are useful tools in characterizing ancient lake environments. In this way, the study of the sedimentary record from the small ancient Sarliève Lake (Limagne, Massif Central, France) aims to reconstruct the hydrological evolution during the Holocene, using petrographical, mineralogical and geochemical analyses. The fine‐grained marls, mainly calcitic, display numerous layers rich in pristine Ca‐dolomite, with small amounts of aragonite, which are clearly autochthonous. As these minerals are rather unusual in the temperate climatic context of western Europe, the question arises about their forming conditions, and therefore that of the lacustrine environment. Ca‐dolomite prevails at the base of the sequence as a massive dolomicrite layer and, in the middle part, it builds up most of the numerous laminae closely associated with organic matter. Scanning electron microscope observations reveal the abundance of tiny crystals (tens to hundreds of nanometres) mainly organized as microspheres looking like cocci or bacilli. Such a facies is interpreted as resulting from the fossilization of benthic microbial communities by dolomite precipitation following organic matter consumption and extracellular polymeric substance degradation. These microbial dolomites were precipitated in a saline environment, as a consequence of excess evaporation from the system, as is also suggested by their positive ?18O values. The facies sequence expresses the following evolution: (i) saline pan, i.e. endorheic stage with a perennial lowstand in lake level (Boreal to early Atlantic periods); (ii) large fluctuations in lake level with sporadic freshening of the system (Atlantic); (iii) open lake stage (sub‐boreal); and (iv) anthropogenic drainage (sub‐Atlantic).  相似文献   
2.
The iron resources of the ‘Bretagne-Anjou’ basin proceed essentially from four layers of sedimentary ore in the lower gres armoricain (Arenig). The more frequent paragenesis combine quartz, magnetite, siderite and silicates (bavalite, stilpnomelane). The hematite and pyrite parageneses are rarer. Two ore types were distinguished petrographically: one type with allochems and one without allochems. The study of both paragenesis and thickness variations of the ore layers enables one to reconstitute the sedimentation history: iron is dissolved on the emerged cadomian reliefs and transported to the sedimentary basin, which was shallow and strewn with islands and shoals. Then, according to local conditions, iron precipitated either under its oxydized forms (hematite, magnetite) or under its reduced forms (silicates, pyrite, siderite). The essential factors of parageneses differentiation were the depth of the basin, the water agitation and the organic matter content of the sediment. In some cases little concretions were formed in the sediment and gave rise to allochems which can be moved away later and deposited elsewhere.  相似文献   
3.
Up to now the best Quaternary climatic sequences come from oceanic isotope studies, but terrestrial sequences are also well known, usually for pollen or ice core data. A new sequence providing climatic information for the last 500,000 years has been studied in the loess series of Achenheim (Alsace), using the mollusc record in relation to other stratigraphical data. Mollusc assemblages are analysed using a multivariate method. The correspondence analysis used here allows us to explain, in ecological terms, the general variability of the Achenheim set. Most Pleistocene mollusc species have the advantage that modem individuals live in the same assemhlages. So, the known ecology and distribution of the modern molluscs allow us to conclude that the first two factors explain variations in temperature and moisture. Each loading, on a factor, of each association in its stratigraphical level contributes to characterizing the evolution of each climatic parameter through time. For the last five climatic cycles, these evolutions are expressed as a function of the depth within the series. As they are well preserved, the last three glacial cycles are studied in detail. They correspond to the last 350,000 years, are compared with SPECMAP data and particularly show correlations between continental and marine climatic indicators. The mollusc assemblages of the loess sequence also provide information on temperature and moisture conditions. The evolutions of each parameter are not identical during the last three cycles, indicating that the climatic history of one cycle cannot be transferred to the others. The mollusc assemblages also record the occurrence of an oscillatory system, especially during the Weichselian Upper Pleniglacial (isotopic stage 2) when it announces the Late Glacial variations. Similar oscillating excursions seem to have occurred during the older glacial stages.  相似文献   
4.
Four sample sets of the Upper and Middle Loire river sands were analyzed in order to study the impact of natural and anthropogenic factors on their petrographic composition in space (on an 800 km stretch) and time. Composition was determined by modal analysis of three sand-size fractions using a polarizing optical microscope and calculated for each sample (“standard sand” = Sst). The watershed is composed mainly of endogenic (Massif Central) and sedimentary (southern Parisian Basin) rocks. B-set sands collected in channels for different water flows in 1996 show that Sst compositions vary by only 5 %. Present-day sands in the Upper Loire and Middle Loire have very high petrographic immaturity comparing to others worldwide fluvial sands, although bio-climatic conditions favor sand maturation by source-rock weathering in the watershed. This shows the strong impact of the Massif Central on sediment yield due to relief rejuvenation as a consequence of the formation of the Alps during the Quaternary. Fluvial sands stored during the Weichselian and the Holocene in the Middle Loire floodplain, although partly weathered since their deposition, show higher inputs from the endogenic rocks of the Massif Central than present-day deposits. This can be explained by Weichselian periglacial conditions and the development of crop farming since the Neolithic, which favored mechanical erosion, particularly in the Massif Central which is characterized by a cold, humid climate and steep slopes. The upstream-downstream change in the composition of presently deposited sand is low in the diked area. It shows however that basalt and some heavy mineral grains are vulnerable to abrasion during transport and indicates a marked sediment yield from ancient sediment stored in the floodplain. This is in line with the high incision of the river bed over the last 150 years partly due to dam construction and aggregate mining.  相似文献   
5.
The study of eight stratigraphic sections at the margin of the semi-enclosed Zsámbék Basin (Hungary) allows the sedimentary anatomy of oolitic–bioclastic systems in the Sarmatian of the Central Paratethys to be reconstructed. The mollusc, foraminiferal and ostracod associations indicate that the carbonate systems are Latest Badenian to Late Sarmatian in age. The Lower–Upper Sarmatian deposits are organized in superimposed subaqueous dunes prograding towards the basin on a low-angle ramp. During the Late Sarmatian, the ramp underwent subaerial erosion linked to a moderate relative fall in sea-level. Lagoonal deposits were later formed and microbial–nubeculariid–bryozoan–serpulid buildups were emplaced. The 'abnormal' marine conditions of the Sarmatian, conducive to the development of a poorly diversified flora and fauna and dominant non-skeletal grains, are linked to fluctuating salinities, mesotrophic to eutrophic conditions and perhaps high alkalinity.  相似文献   
6.
Snail assemblages are used to estimate February and August temperatures during the past 10,000 years in western Europe. We find that a strong warming occurred after the Younger Dryas event, followed by several rapid cooling and warming events. These observations are in agreement with insect and pollen proxy data from the European continent and with estimates of sea-surface temperature from the North Atlantic Ocean as well as with fluctuations of glaciers in western Norway. This study also confirms that terrestrial molluscs can provide reliable climatic data in conjunction with other proxy data.  相似文献   
7.
A multidisciplinary approach was used to analyse the role of pioneer trees (Populus nigra) on bar formation in the modern fluvial system of the River Loire (France). Data were collected on seven plots located on a secondary channel, chosen for their vegetation cover and their sedimentary context. Physical features of vegetation, topographical evolution, sediment grain size and flow velocity were investigated during and after floods between 2001 and 2003. Woody vegetation responds morphologically to fast‐flowing waters and sediment deposition. These adaptations influence the role played by trees on local sedimentary processes. Some morphological types of trees exert a strong influence during flood events by deflecting, reducing or increasing the flow energy. As a consequence, the evolution of bedforms, distribution of sediment grain size and slopes are controlled by the flood type, the morphological context (i.e. high‐ or low‐energy zones), the morphology of the vegetated bar and the characteristics of vegetation. Conceptual models are proposed to account for local processes and evolution of tree groves. The first model, which describes the behaviour of groves during a single flood, underlines the sediment deposition downstream of the trees and the trapping of bedload sediments. During the falling stage of the flood, the reorientation of current streams, constrained by both local bed topography and woody vegetation, induces transverse sediment fluxes. For these water levels, the control exerted by trees on small‐scale sedimentary processes becomes significant. The second model shows the evolution of vegetation bands over several flood events. In particular, it describes the influence of vegetation on the fixing and reworking of bedload sediments during the falling limb of the hydrograph. The coalescence of vegetation‐induced bedforms and the resulting morphological changes increase the deflection power of the vegetated bar, inducing the deposition of finer sediments.  相似文献   
8.
Lake Bogoria is a saline, alkaline, meromictic lake in a geothermally active part of the Kenya Rift Valley. Coring of the lake floor has shown two types of sedimentation – a shallow fan–deltaic clastic zone and a deeper zone with alternating organic muds and evaporites. The organic muds formed during periods of relatively high lake level and high microbial productivity, the evaporites during more arid phases. Analyses of the cores show many environmental fluctuations during the past 30000 years, related to regional climatic changes and to local tectonic and hydrological controls.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号