首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
地质学   1篇
  2013年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
A simple but comprehensive framework for analysing the potential for and constraints to groundwater development for irrigated agriculture in sub-Saharan Africa is proposed. The framework, based on food value chain principles, is applied to the sub-Saharan context and a specific catchment in Tanzania, the Usangu plains, where groundwater has been proposed as a strategic resource for augmenting food production and smallholder livelihoods and to alleviate seasonal water scarcity. The novel contribution of the work is the presentation of a tool that can be applied to support an interdisciplinary approach to systematically identify most significant barriers and most critical water management and development interventions for sustainable development of groundwater irrigation. The result of the case study shows that farmer economics, capacity, and pump and well drilling market constraints limit groundwater irrigation in the Usangu plains rather than hydrogeological conditions.  相似文献   
2.
Biodegradation of naphthalene by Micrococcus sp., isolated from the effluent of an activated sludge plant, was studied. The effects of pH (5–8), glucose concentration (100–1000 mg/L) and inoculum concentrations (1–5%) on the growth and naphthalene degradation potential of Micrococcus sp. were investigated. Maximum naphthalene degradation and subsequent high microbial growth were observed at optimum pH (pH 7), glucose concentration (500 mg/L) and inoculum concentration (3%). To investigate the maximum naphthalene tolerance potential of Micrococcus sp., very high concentrations of naphthalene (500–5000 mg/L) were used in the presence of non‐ionic surfactants. The examined surfactants (Triton X‐100 and Tween‐80) increased the bioavailability of naphthalene to the microbes and Complete naphthalene degradation by Micrococcus sp. was observed at an initial naphthalene concentration of 500 mg/L. However, the degradation potential decreases as the naphthalene concentration increases. Very high naphthalene concentrations also affected the growth of microbes and the corresponding substrate inhibition kinetics was described using four models (Haldane, Webb, Edward and Aiba). Based on correlation coefficient and percentage error values, all four substrate kinetic models were able to describe the dynamic behavior of naphthalene biodegradation by Micrococcus sp.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号