首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   5篇
地质学   3篇
  2019年   1篇
  2013年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
排序方式: 共有8条查询结果,搜索用时 140 毫秒
1
1.
Spatial and seasonal variations of the oxidation of Fe(II) and As(III) have been previously documented in the Carnoulès (Gard, France) Acid Mine Drainage (AMD) by bulk analyses. These variations may be correlated with the variations in the activity of indigenous As(III)- and Fe(II)-oxidizing bacteria living in the As-rich Carnoulès water. The activity of these bacteria indeed plays an important role in the nature and composition of the solid phases that sequester arsenic at this site. In order to better understand the interactions of microbes with Fe and As in the Carnoulès AMD, we combined Transmission Electron Microscopy (TEM) and Scanning Transmission X-ray Microscopy (STXM) to collect near-edge X-ray absorption fine structure (NEXAFS) spectra at high spatial and energy resolution and to perform high spatial resolution imaging at the 30-50 nm scale. Spectromicroscopy was performed at the C K-edge, Fe L2,3-edge, and As L2,3-edge, which allowed us to locate living and/or mineralized bacterial cells and to characterize Fe and As oxidation states in the vicinity of those cells. TEM was used to image the same areas, providing higher resolution images and complementary crystallographic and compositional information through electron diffraction and EDXS analysis. This approach provides unique information on heterogeneous geochemical processes that occur in a complex microbial community in an AMD environment at the micrometer and submicrometer-scale. Bacterial cells in the Carnoulès AMD were frequently associated with mineral precipitates, and a variety of biomineralization patterns were observed. While many mineral precipitates were not associated with bacterial cells, they were associated with pervasive organic carbon. Finally, abundant biomineralized organic vesicles were observed in the Carnoulès AMD. Such vesicles may have been overlooked in highly mineralized extreme environments in the past and may represent an important component in a common biomineralization process in such environments.  相似文献   
2.
Transgressive dune fields often comprise a multiplicity of landforms where vegetation processes largely affect landform dynamics, which in turn, also affect vegetation processes. These associations have seldom been studied in detail. This paper examines four separate landform types in a complex coastal transgressive dunefield located in the central Gulf of Mexico, in order to assess the relationships between dunefield habitat, local environmental factors, vegetation associations and landform evolution. Topographic surveys using tape and clinometer were conducted in conjunction with vegetation survey transects at four locations across the Doña Juana dunefield. Vegetation surveys allowed the estimation of relative plant cover of each plant species found along the transects. A large variety of landforms were found at the Doña Juana Dunefield: deflation plains, gegenwalle (counter) ridges, transverse dune trailing ridges, blowouts and parabolic dunes, aklé (fish‐scale shaped) dunefields and precipitation ridges, with plant species associations developing on these different landforms equally variable. Flood tolerant species were located in the lower parts (deflation plain and gegenwalle ridges) whereas the older and dryer parts were covered by coastal matorral shrubs. Burial‐tolerant species were dominant in the most mobile areas (blowouts and aklé dunefield and margin). The dune trailing ridge, with relatively milder conditions, showed the highest richness, with no dominant species. A dual interaction was found such that colonizing species both create and affect topography, and in turn, topography determines vegetation association and succession patterns. In coastal dunes, the vegetation and abiotic environment (namely the different landforms and the inherent micronevironmental variability) interact tightly and generate a complex and highly dynamic biogeomorphic system where substrate mobility and colonization processes reinforce one another in positive feedback. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
3.
Microorganisms can mediate the formation of minerals by a process called biomineralization. This process offers an efficient way to sequester inorganic pollutants within relatively stable solid phases. Here we review some of the main mechanisms involved in the mediation of mineral precipitation by microorganisms. This includes supersaturation caused by metabolic activity, the triggering of nucleation by production of more or less specific organic molecules, and the impact of mineral growth. While these processes have been widely studied in the laboratory, assessment of their importance in the environment is more difficult. We illustrate this difficulty using a case study on an As-contaminated acid mine drainage located in the South of France (Carnoulès, Gard). In particular, we explore the potential relationships that might exist between microbial diversity and mineral precipitation. The present review, far from being exhaustive, highlights some recent advances in the field of biomineralogy and provides non-specialists an introduction to some of the main approaches and some questions that remain unanswered.  相似文献   
4.
Morphological and vegetation changes on the Moçambique barrier dunefield system are examined for the period 1938–2002 from aerial photography, and a variety of factors are investigated as possible driving factors. Human factors include a decrease in grazing pressure and tree felling from the early 1960s onwards after 200 years of these activities, and fires. In the 1960s tree planting also took place. During the period 1963 to 1970 there was a marked decline in drift potential (DP – potential sand transport), and then a period of very low DPs (1970–1974). This period falls within the time interval when vegetation cover significantly increased by ~70% along the Moçambique barrier (from 1956 to 1978). During the 1960s to present, the rainfall increased. Analyses of other transgressive dunefields in Santa Catarina and Rio Grande do Sul states show similar trends so it is likely that climatic factors such as increasing rainfall and decreasing DPs are responsible for driving dunefield changes and vegetation colonization of the barriers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
Studies have shown that the impact of climate change, human and animal actions on coastal vegetation can turn stabilized dunes into active mobile dunes and vice versa. Yet, the driving factors that trigger vegetation changes in coastal dunes are still not fully understood. In the transgressive dunefields of the Younghusband Peninsula (south-east coast of South Australia) historical aerial photographs show an increase in vegetation cover over the last ~70 years. This study attempts to identify the causes of the changes in vegetation cover (1949 to 2017) observed in a typical section of the coastal dune systems of the Peninsula. Vegetation cover was first estimated for various years using the available historical aerial photography (long-term changes – 1949 to 2017) and recent satellite imagery (short-term annual changes – 2010 to 2017) for the area, and then results were discussed against the observed changes in climatic variables and rabbit density, factors that could have played a role in this transformation. Results of long-term changes show that the vegetation cover has increased significantly from 1949 to 2017, from less than 7% vegetation cover to almost 40%, increasing dune stabilization and forming parabolic dune systems. Periods with the largest growth in vegetation cover (1952-1956 and 2009-2013) coincide with a significant decline in rabbit numbers. Rabbit density was found to be the primary factor linked to the rapid vegetation growth and stabilization of the dunefield, for both decadal long-term (last 68 years) and annual short-term changes (last 8 years). Other factors such as changes in rainfall, aeolian sediment transport, land use practices, and the introduction of invasive plants have apparently played a limited to negligible role in this stabilization process. © 2018 John Wiley & Sons, Ltd.  相似文献   
6.
This paper examines a seemingly anomalous situation in southern Brazil where the dunefields on Santa Catarina Island (e.g. Joaquina Beach) migrate to the NNW, almost completely the opposite direction (c. 160) to the dunefields immediately to the south (e.g. Pinheira Beach), and some much further to the north (e.g. Cabo Frio) which migrate to the SSW. A variety of mechanisms are examined to explain the differences in dunefield migration including grain size variations, topographic effects on local winds, shoreline orientation, and regional wind field changes. The mean grain sizes of the two beaches, Pinheira and Joaquina, are not sufficiently different to restrict aeolian sediment transport in either place, nor to account for a lack of transport from the NNE to the SSW in the case of Joaquina. Some topographic steering of the wind is likely but could not account for the long‐term average difference in migration trends of the island dunefields compared to the mainland dunefields. While the orientation of the shoreline to prevailing winds is an important control on beach and dune sediment transport, it is not the dominant controlling mechanism. An analysis of the regional wind patterns demonstrates that there is a major shift in the regional wind field near the island such that the dominant island winds blow from the SW/SSW while those further south blow from the NE. It is concluded that this is the predominant reason for the divergence in the direction of migration of the dunefields. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
7.
This paper examines patterns of foredune vegetation along an embayment in southern Brazil and the relationships between variations in percent cover and diversity, and environmental factors such as beach/surfzone type and exposure to wind and wave energy. The study was conducted on Moçambique Beach, Brazil, which displays significant alongshore variations in exposure to the prevailing winds and waves, beach/surfzone morphodynamic type, type and dimensions of the dune systems and foredune vegetation cover and diversity. Two vegetation surveys were carried out in contiguous 1 m2 quadrats across the foredune. The presence/absence, percent cover of the species, diversity and similarity between the vegetation of the profiles surveyed and their relation with environmental conditions are examined. The results show that the vegetation cover decreases from south to north, possibly reflecting the increasing exposure to wind and wave energy. Distinct patterns of species distributions occur along Moçambique beach, such that different plant species are dominant on the southern, middle and northern ends of the beach. A cluster analysis demonstrated two associations: the first one is represented by the profiles located in the lower energy zone of the beach, and the second association is represented by the profiles more exposed to wind and wave energy, sediment deposition and salt spray. The diversity of species decreases northwards, possibly influenced by the surfzone type, number of breaking waves and degree of aeolian transport. The presence/absence of the species and the vegetation cover on the foredune reflect the varying levels of exposure of the beach and foredune to the winds and waves and also reflect the volume of sediment deposition on the foredune and the beach mobility determined by the morphodynamic beach/surfzone type. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
8.
Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria   总被引:1,自引:0,他引:1  
Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 ± 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and offer potential signatures of those metabolisms that can be looked for in the geological record.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号