首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   16篇
  国内免费   5篇
测绘学   11篇
大气科学   24篇
地球物理   60篇
地质学   81篇
海洋学   31篇
天文学   24篇
自然地理   41篇
  2022年   4篇
  2021年   7篇
  2020年   7篇
  2019年   3篇
  2018年   4篇
  2017年   9篇
  2016年   9篇
  2015年   6篇
  2014年   18篇
  2013年   15篇
  2012年   10篇
  2011年   16篇
  2010年   13篇
  2009年   14篇
  2008年   10篇
  2007年   9篇
  2006年   6篇
  2005年   14篇
  2004年   6篇
  2003年   11篇
  2002年   4篇
  2001年   7篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1969年   1篇
  1963年   1篇
排序方式: 共有272条查询结果,搜索用时 31 毫秒
1.
2.
This paper presents the findings from an in-depth analysis of the (axial) stiffness data recorded during tension–tension fatigue tests on wire ropes, particularly in relation to how changes in stiffness during testing relate to changes in rope strength. A linear relationship between stiffness and strength is shown to exist and a methodology presented for quantifying residual strength with applied cycles. New lower bound fatigue lines for six-strand rope and spiral strand are presented which are based on a 10% loss of strength. These new lines have the advantage of having been established using a common discard criterion for wire ropes.  相似文献   
3.
Using GPS multipath to measure soil moisture fluctuations: initial results   总被引:13,自引:2,他引:11  
Measurements of soil moisture are important for studies of climate and weather forecasting, flood prediction, and aquifer recharge studies. Although soil moisture measurement networks exist, most are sparsely distributed and lack standardized instrumentation. Measurements of soil moisture from satellites have extremely large spatial footprints (40–60 km). A methodology is described here that uses existing networks of continuously-operating GPS receivers to measure soil moisture fluctuations. In this technique, incoming signals are reflected off and attenuated by the ground before reception by the GPS receiver. These multipath reflections directly affect signal-to-noise ratio (SNR) data routinely collected by GPS receivers, creating amplitude variations that are a function of ground reflectivity and therefore soil moisture content. After describing this technique, multipath reflection amplitudes at a GPS site in Tashkent, Uzbekistan are compared to estimates of soil moisture from the Noah land surface model. Although the GPS multipath amplitudes and the land surface model are uncalibrated, over the 70-day period studied, they both rise sharply following each rainfall event and slowly decrease over a period of ∼10 days.  相似文献   
4.
Properties of acoustic-gravity waves in the upper atmosphere of Venus are studied using a two-fluid model which includes the effects of wave-induced diffusion in a diffusively separated atmosphere. In conjunction with neutral mass spectrometer data from the Pioneer Venus orbiter, the theory should provide information on the distribution of wave sources in the Venus upper atmosphere. Observed wave structure in species density measurements should generally have periods ?30–35 min, small N2, CO, and O amplitudes, and highly variable phase shifts relative to CO2. A near resonance may exist between downward phase-propagating internal gravity and diffusion waves near the 165-km level at periods near 29 min. As a result, if very large He wave amplitudes are observed near this level, it will indicate that the wave source is below the 150- to 175-km level and that the exospheric temperature is close to 350°K. Wave energy dissipation may be an important mechanism for heating of the nightside Venus thermosphere. Large-density oscillations in stratospheric cloud layer constituents are also possible and may be detectable by the Pioneer Venus large probe neutral mass spectrometer.  相似文献   
5.
In the Tampa Bay region of Florida, extreme levels of annual and seasonal rainfall are often associated with tropical cyclones and strong El Niño episodes. We used stepwise multiple regression models to describe associations between annual and seasonal rainfall levels and annual, bay-segment mean water clarity (as Secchi depth [m]), chlorophylla (μg I?1), color (pcu), and turbidity (ntu) over a 20-yr period (1985–2004) during which estimated nutrient loadings have been dominated by non-point sources. For most bay segments, variations in annual mean water clarity were associated with variations in chlorophylla concentrations, which were associated in turn with annual or seasonal rainfall. In two bay segments these associations with annual rainfall were superimposed on significant long-term declining trends in chlorophylla. Color was significantly associated with annual rainfall in all bay segments, and in one segment variations in color were the best predictors of variations in water clarity. Turbidity showed a declining trend over time in all bay segments and no association with annual rainfall, and was significantly associated with variations in water clarity in only one bay segment. While chlorophylla, color, and turbidity a affected water clarity to varying degrees, the effects of extreme rainfall events (El Niño events in 1998 and 2003, and multiple tropical cyclone events in 2004) on water clarity were relatively short-lived, persisting for periods of months rather than years. During the 20-yr period addressed in these analyses, declining temporal trends in chlorophylla and turbidity, produced in part by a long-term watershed management program that has focused on curtailing annual loadings of nitrogen and other pollutants, may have helped to prevent the bay as a whole from responding more adversely to the high rainfall periods that occurred in 1998 and 2003–2004.  相似文献   
6.
We have measured the concentration of in situ produced cosmogenic 10Be and 26Al from bare bedrock surfaces on summit flats in four western U.S. mountain ranges. The maximum mean bare-bedrock erosion rate from these alpine environments is 7.6 ± 3.9 m My−1. Individual measurements vary between 2 and 19 m My−1. These erosion rates are similar to previous cosmogenic radionuclide (CRN) erosion rates measured in other environments, except for those from extremely arid regions. This indicates that bare bedrock is not weathered into transportable material more rapidly in alpine environments than in other environments, even though frost weathering should be intense in these areas. Our CRN-deduced point measurements of bedrock erosion are slower than typical basin-averaged denudation rates ( 50 m My−1). If our measured CRN erosion rates are accurate indicators of the rate at which summit flats are lowered by erosion, then relief in the mountain ranges examined here is probably increasing.

We develop a model of outcrop erosion to investigate the magnitude of errors associated with applying the steady-state erosion model to episodically eroding outcrops. Our simulations show that interpreting measurements with the steady-state erosion model can yield erosion rates which are either greater or less than the actual long-term mean erosion rate. While errors resulting from episodic erosion are potentially greater than both measurement and production rate errors for single samples, the mean value of many steady-state erosion rate measurements provides a much better estimate of the long-term erosion rate.  相似文献   

7.
Palaeo-ice sheets are important analogues for understanding contemporary ice sheets, offering a record of ice sheet behaviour that spans millennia. There are two main approaches to reconstructing palaeo-ice sheets. Empirical reconstructions use the available glacial geological and chronological evidence to estimate ice sheet extent and dynamics but lack direct consideration of ice physics. In contrast, numerically modelled simulations implement ice physics, but often lack direct quantitative comparison with empirical evidence. Despite being long identified as a fruitful scientific endeavour, few ice sheet reconstructions attempt to reconcile the empirical and model-based approaches. To achieve this goal, model-data comparison procedures are required. Here, we compare three numerically modelled simulations of the former British–Irish Ice Sheet with the following lines of evidence: (a) position and shape of former margin positions, recorded by moraines; (b) former ice-flow direction and flow-switching, recorded by flowsets of subglacial bedforms; and (c) the timing of ice-free conditions, recorded by geochronological data. These model–data comparisons provide a useful framework for quantifying the degree of fit between numerical model simulations and empirical constraints. Such tools are vital for reconciling numerical modelling and empirical evidence, the combination of which will lead to more robust palaeo-ice sheet reconstructions with greater explicative and ultimately predictive power.  相似文献   
8.
In the twenty-first century, there are three American Wests, which cut across cultural, political, physical, and economic boundaries. Parts of the West are booming, building homes, and adding population; others are legally off limits to such development; and much of the West has been bypassed by such development and growth. These are called here the Booming West, Protected West, and Bypassed West. Maps of climate, political boundaries, ethnic and racial identities, or presidential voting patterns do not match these three Wests. Each West has a different relationship to the others and might see them as threats or opportunities, and each West can be expected to grow in different areas at the expense of other Wests. The boundaries between the three Wests could be important locations; sharp transitions can exist between Wests, perhaps nowhere more so than where a fast growing metro area abuts a national park or forest boundary. Finally, the effects of climate change cut across the three Wests and have different implications for their future. Continued population growth will further emphasize the boundaries between each of the three Wests and raise the stakes for their control.  相似文献   
9.
The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.  相似文献   
10.
Predicting the future response of ice sheets to climate warming and rising global sea level is important but difficult. This is especially so when fast-flowing glaciers or ice streams, buffered by ice shelves, are grounded on beds below sea level. What happens when these ice shelves are removed? And how do the ice stream and the surrounding ice sheet respond to the abruptly altered boundary conditions? To address these questions and others we present new geological, geomorphological, geophysical and geochronological data from the ice-stream-dominated NW sector of the last British–Irish Ice Sheet (BIIS). The study area covers around 45 000 km2 of NW Scotland and the surrounding continental shelf. Alongside seabed geomorphological mapping and Quaternary sediment analysis, we use a suite of over 100 new absolute ages (including cosmogenic-nuclide exposure ages, optically stimulated luminescence ages and radiocarbon dates) collected from onshore and offshore, to build a sector-wide ice-sheet reconstruction combining all available evidence with Bayesian chronosequence modelling. Using this information we present a detailed assessment of ice-sheet advance/retreat history, and the glaciological connections between different areas of the NW BIIS sector, at different times during the last glacial cycle. The results show a highly dynamic, partly marine, partly terrestrial, ice-sheet sector undergoing large size variations in response to sub-millennial-scale climatic (Dansgaard–Oeschger) cycles over the last 45 000 years. Superimposed on these trends we identify internally driven instabilities, operating at higher frequency, conditioned by local topographic factors, tidewater dynamics and glaciological feedbacks during deglaciation. Specifically, our new evidence indicates extensive marine-terminating ice-sheet glaciation of the NW BIIS sector during Greenland Stadials 12 to 9 – prior to the main ‘Late Weichselian’ ice-sheet glaciation. After a period of restricted glaciation, in Greenland Interstadials 8 to 6, we find good evidence for rapid renewed ice-sheet build-up in NW Scotland, with the Minch ice-stream terminus reaching the continental shelf edge in Greenland Stadial 5, perhaps only briefly. Deglaciation of the NW sector took place in numerous stages. Several grounding-zone wedges and moraines on the mid- and inner continental shelf attest to significant stabilizations of the ice-sheet grounding line, or ice margin, during overall retreat in Greenland Stadials 3 and 2, and to the development of ice shelves. NW Lewis was the first substantial present-day land area to deglaciate, in the first half of Greenland Stadial 3 at a time of globally reduced sea-level c. 26 kabp , followed by Cape Wrath at c. 24 kabp. The topographic confinement of the Minch straits probably promoted ice-shelf development in early Greenland Stadial 2, providing the ice stream with additional support and buffering it somewhat from external drivers. However, c. 20–19 kabp , as the grounding-line migrated into shoreward deepening water, coinciding with a marked change in marine geology and bed strength, the ice stream became unstable. We find that, once underway, grounding-line retreat proceeded in an uninterrupted fashion with the rapid loss of fronting ice shelves – first in the west, then the east troughs – before eventual glacier stabilization at fjord mouths in NW Scotland by ~17 kabp. Around the same time, ~19–17 kabp , ice-sheet lobes readvanced into the East Minch – possibly a glaciological response to the marine-instability-triggered loss of adjacent ice stream (and/or ice shelf) support in the Minch trough. An independent ice cap on Lewis also experienced margin oscillations during mid-Greenland Stadial 2, with an ice-accumulation centre in West Lewis existing into the latter part of Heinrich Stadial 1. Final ice-sheet deglaciation of NW mainland Scotland was punctuated by at least one other coherent readvance at c. 15.5 kabp , before significant ice-mass losses thereafter. At the glacial termination, c. 14.5 kabp , glaciers fed outwash sediment to now-abandoned coastal deltas in NW mainland Scotland around the time of global Meltwater Pulse 1A. Overall, this work on the BIIS NW sector reconstructs a highly dynamic ice-sheet oscillating in extent and volume for much of the last 45 000 years. Periods of expansive ice-sheet glaciation dominated by ice-streaming were interspersed with periods of much more restricted ice-cap or tidewater/fjordic glaciation. Finally, this work indicates that the role of ice streams in ice-sheet evolution is complex but mechanistically important throughout the lifetime of an ice sheet – with ice streams contributing to the regulation of ice-sheet health but also to the acceleration of ice-sheet demise via marine ice-sheet instabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号