首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
地质学   4篇
  2021年   1篇
  2018年   2篇
  2016年   1篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The possibility of using concrete as a construction material at the Moon surface is considered. Dissimilarities between the Earth and the Moon and their possible effects on concrete are also emphasized. Availability of constituent materials for concrete at lunar surface is addressed. An emphasis is given to two types of materials, namely, hydraulic concrete and sulfur concrete. Hydraulic concrete necessitates the use of water and sulfur concrete makes use of molten sulfur in lieu of cement and water.  相似文献   
2.
ABSTRACT

The major flood of 2014 in the two eastern, transboundary rivers, the Jhelum and Chenab in Punjab, Pakistan, was simulated using the two-dimensional rainfall–runoff model. The simulated hydrograph showed good agreement with the observed discharge at the model outlet and intervening barrages, with a Nash-Sutcliffe efficiency of 0.86 at the basin outlet. Further, simulated flood inundation extent showed good agreement with the MODIS imagery with a fit (%) of 0.87. For some affected areas that experienced short-duration flooding, local housing damage data confirmed the simulated results. Besides the rainfall–runoff and flood inundation modelling, parameter sensitivity analysis was undertaken to identify the influence of various river and floodplain parameters. The analysis showed that the river channel geometric parameters and the roughness coefficients exerted the primary influence over flood extent and peak flow.  相似文献   
3.
Development of a well-calibrated, distributed hydrological model for flood forecasting based on rainfall and snowmelt is quite challenging, especially when in situ data is limited or unavailable. This paper presents the study carried out to parameterise the Integrated Flood Analysis System (IFAS) model for the trans-boundary, scarcely gauged catchments of Jhelum and Chenab rivers in Pakistan. Rainfall-runoff analysis was performed with a two-layered tank configuration, integrating snowmelt and dam and barrage operation from the very upstream in India to Trimmu Barrage in Pakistan. A grid size of 5?×?5 km was considered. Global map topography, land cover and soil data was utilised. The model was tested considering different magnitudes of floods of the years 2014, 2015 and 2017. The results showed that the satellite rainfall product, i.e. Global Satellite Mapping of Precipitation (GSMaP-NRT), underestimated the rainfall volume, compared to the ground-gauged rainfall. The GSMaP-IF correction method showed poor performance owing to the lack of ground observatory rainfall data for correcting the trans-boundary part of the basin. The GSMaP-Type1 correction method showed good results, except for the confluence point where complex flow conditions were not properly reproduced by the model. In addition, the incorporation of dam and barrages in the model improved the simulated flow results. It is concluded that the satellite rainfall estimates must be corrected to improve the results. Snowmelt module estimated the snowmelt contribution as 3 to 7% and 4 to 23% of the average daily discharge during the monsoon season at Mangla Dam and Marala Barrage, respectively, during 2014 and 2015. This study assessed various correction methods and concluded that the model and methodology used in the study functioned well with suitable precipitation.  相似文献   
4.
Geotechnical and Geological Engineering - The stability of the pavement system on old Ogbomoso-Ilorin road in southwestern Nigeria basement complex was investigated. This was carried out by...  相似文献   
5.
Pakistan has experienced severe floods over the past decades due to climate variability. Among all the floods, the flood of 2010 was the worst in history. This study focuses on the assessment of (1) riverine flooding in the district Jhang (where Jhelum and Chenab rivers join, and the district was severely flood affected) and (2) south Asiatic summer monsoon rainfall patterns and anomalies considering the case of 2010 flood in Pakistan. The land use/cover change has been analyzed by using Landsat TM 30 m resolution satellite imageries for supervised classification, and three instances have been compared, i.e., pre-flooding, flooding, and post-flooding. The water flow accumulation, drainage density and pattern, and river catchment areas have been calculated by using Shutter Radar Topography Mission digital elevation model 90 m resolution. The standard deviation of south Asiatic summer monsoon rainfall patterns, anomalies and normal (1979–2008) has been calculated for July, August, and September by using rainfall data set of Era interim (0.75° × 0.75° resolution). El Niño Southern Oscillation has also been considered for its role in prevailing rainfall anomalies during the year 2010 over Upper Indus Basin region. Results show the considerable changing of land cover during the three instances in the Jhang district and water content in the rivers. Abnormal rainfall patterns over Upper Indus Basin region prevailed during summer monsoon months in the year 2010 and 2011. The El Niño (2009–2010) and its rapid phase transition to La Niña (2011–2012) may be the cause of severity and disturbances in rainfall patterns during the year 2010. The Geographical Information System techniques and model based simulated climate data sets have been used in this study which can be helpful in developing a monitoring tool for flood management.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号