首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
大气科学   1篇
地质学   3篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  1994年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Chromite-bearing peridotites of the Ordovician Miyamori ophiolitecomplex exhibit spatial mineralogical variations on scales rangingfrom several centimeters to a few kilometers. The largest variationscorrespond to the entire structure of the complex, which featuresa layered zone of interstratified harzburgite, wehrlite, andvarious pyroxenites sandwiched between zones of unlayered harzburgiteand dunite containing only minor pyroxenite bands. All zonesexhibit the same deformation microstructures, tabular equigranularto porphyroclastic textures, and strong mineral aggregate lineation.Harzburgite from the unlayered zones is characterized by olivinevalues of 100Mg/(Mg+Fe)=91–93.5 and chromite values of100Cr/(Cr+Al+Fe3+)=40–75. These variables exhibit a positivecorrelation, which is typical of harzburgites and lherzolitesfrom the basal units of ophiolites and from xenoliths in alkalibasalts and kimberlites. The harzburgite is therefore interpretedas a residue from partial melting in the mantle. By contrast,harzburgite in the interlayered zone features olivine valuesof 100Mg/(Mg+Fe)=88–92 and chromite values of 100Cr/(Cr+Al+Fe3+)=40–60,and in this case the variables tend to show a negative correlationin any given locality and they partly overlap data from theintercalated wehrlite and dunite. The harzburgite of the layeredzone is interpreted as residual mantle that reacted with evolvedmelts that then crystallized as wehrlite and dunite. The harzburgitein the unlayered zones is more refractory than that in the layeredzone, even after removing effects of reaction. This differencecan be explained either by enhanced partial melting and meltextraction in the unlayered zones, possibly owing to the preferentialintroduction of a waterrich fluid, or by melt segregation fromthe unlayered zones and transfer to the layered zone in responseto a piezometric pressure gradient and compaction of a solidresidual matrix. Mineralogical evidence suggests that evolvedmelts migrated through conduits formed in the layered zone byfracturing or diapirism.  相似文献   
2.
The ascent history of the Horoman peridotite complex, Hokkaido,northern Japan, is revised on the basis of a detailed studyof large ortho- and clinopyroxene grains 1 cm in size (megacrysts)in the Upper Zone of the complex. The orthopyroxene megacrystsexhibit distinctive M-shaped Al zoning patterns, which werenot observed in porphyroclastic grains less than 5 mm in sizedescribed in previous studies. Moreover, the Al and Ca contentsof the cores of the orthopyroxene megacrysts are lower thanthose of the porphyroclasts. The Upper Zone is inferred to haveresided not only at a higher temperature than previously suggestedbut also at a higher pressure (1070°C, 2·3 GPa) thanthe Lower Zone (950°C, 1·9 GPa), in the garnet stabilityfield, before the ascent of the two zones. The Horoman complexprobably represents a 12 ± 5 km thick section of lithosphericmantle with an 10 ± 8°C/km vertical thermal gradient.The current thickness of the Horoman complex is 3 km, whichis a result of shortening of the lithospheric mantle by 0·25± 0·1 during its ascent. The Upper Zone appearsto have experienced a heating event during its ascent throughthe spinel stability field, with a peak temperature as highas 1200°C. The effect of heating decreases continuouslytowards the base of the complex, and the lowermost part of theLower Zone underwent very minor heating at a pressure higherthan 0·5 GPa. The uplift and associated deformation,as well as heating, was probably driven by the ascent of a hotasthenospheric upper-mantle diapir into the Horoman lithosphere. KEY WORDS: Horoman; PT trajectory; thermal history; Al diffusion in pyroxene; geothermobarometry  相似文献   
3.
Processes of crystal separation in a magma heavily laden withcrystals without phase change are investigated from observationson frozen magma systems: Nosappumisaki and other shoshoniteintrusions in the Nemuro peninsula, Japan, for which the originof the crystals and the initial conditions are well constrained.The Nosappumisaki intrusion is 120 m in thickness and extendsfor more than 1·5 km. It exhibits a wide range of lithologicalvariation, principally as a result of crystal redistributionafter intrusion. Crystals in each lithology can be clearly dividedinto two kinds according to their composition and texture: thosepresent before the intrusion of the magma (‘phenocrysts’)and those that crystallized in situ after intrusion. From thevertical change in mode and size of ‘phenocrysts’,it is shown that (1) augite ‘phenocrysts’ were rapidlydeposited, with little overgrowth after intrusion, by significantcoagulation or clustering on a time-scale of more than a fewyears, and (2) plagioclase ‘phenocrysts’, definitelydenser than the melt but concentrated in the upper level, floatedby counter flow of massive deposition of augite ‘phenocrysts’.These results indicate that in a magma heavily laden with crystalsof a few millimeters in size (>20 vol. %), crystal–crystaland crystal–melt interaction play an important role inthe separation of crystals from the host melt. KEY WORDS: magma chamber; sill; crystal settling; plagioclase flotation; Nosappumisaki  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号