首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  国内免费   3篇
地球物理   1篇
地质学   10篇
海洋学   2篇
天文学   7篇
自然地理   2篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  1997年   1篇
  1992年   1篇
  1985年   1篇
  1979年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Krüger, L. C., Paus, A., Svendsen, J. I. & Bjune, A. E. 2011: Lateglacial vegetation and palaeoenvironment in W Norway, with new pollen data from the Sunnmøre region. Boreas, 10.1111/j.1502‐3885.2011.00213.x. ISSN 0300‐9483. Two sediment sequences from Sunnmøre, northern W Norway, were pollen‐analytically studied to reconstruct the Lateglacial vegetation history and climate. The coastal Dimnamyra was deglaciated around 15.3 ka BP, whereas Løkjingsmyra, further inland, became ice‐free around 14 ka BP. The pioneer vegetation dominated by snow‐bed communities was gradually replaced by grassland and sparse heath vegetation. A pronounced peak in Poaceae around 12.9 ka BP may reflect warmer and/or drier conditions. The Younger Dryas (YD) cooling phase shows increasing snow‐bed vegetation and the local establishment of Artemisia norvegica. A subsequent vegetation closure from grassland to heath signals the Holocene warming. Birch forests were established 500–600 years after the YD–Holocene transition. This development follows the pattern of the Sunnmøre region, which is clearly different from the Empetrum dominance in the Lateglacial interstadial further south in W Norway. The Lateglacial oscillations GI‐1d (Older Dryas) and GI‐1b (Gerzensee) are hardly traceable in the north, in contrast to southern W Norway. The southern vegetation was probably closer to an ecotone and more susceptible to climate changes.  相似文献   
2.
High‐P (HP) eclogite and associated garnet–omphacite granulite have recently been discovered in the Mulantou area, northeastern Hainan Island, South China. These rocks consist mainly of garnet, omphacite, hornblende, quartz and rutile/ilmenite, with or without zoisite and plagioclase. Textural relationships, mineral compositions and thermobarometric calculations demonstrate that the eclogite and garnet–omphacite granulite share the same three‐stage metamorphic evolution, with prograde, peak and retrograde P?T conditions of 620–680°C and 8.7–11.1 kbar, 820–860°C and 17.0–18.2 kbar, and 700–730°C and 7.1–8.5 kbar respectively. Sensitive high‐resolution ion microprobe U–Pb zircon dating, coupled with the identification of mineral inclusions in zircon, reveals the formation of mafic protoliths before 355 Ma, prograde metamorphism at c. 340–330 Ma, peak to retrograde metamorphism at c. 310–300 Ma, and subsequent pegmatite intrusion at 295 Ma. Trace element geochemistry shows that most of the rocks have a MORB affinity, with initial εNd values of +2.4 to +6.7. As with similar transitional eclogite–HP granulite facies rocks in the thickened root in the European Variscan orogen, the occurrence of relatively high P?T metamorphic rocks of oceanic origin in northeastern Hainan Island suggests Carboniferous oceanic subduction leading to collision of the Hainan continental block, or at least part of it, with the South China Block in the eastern Palaeo‐Tethyan tectonic domain.  相似文献   
3.
Proterozoic mafic dykes from the southwestern Vestfold Block experienced heterogeneous granulite facies metamorphism, characterized by spotted or fractured garnet‐bearing aggregates in garnet‐absent groundmass. The garnet‐absent groundmass typically preserves an ophitic texture composed of lathy plagioclase, intergranular clinopyroxene and Fe–Ti oxides. Garnet‐bearing domains consist mainly of a metamorphic assemblage of garnet, clinopyroxene, orthopyroxene, hornblende, biotite, plagioclase, K‐feldspar, quartz and Fe–Ti oxides. Chemical compositions and textural relationships suggest that these metamorphic minerals reached local equilibrium in the centre of the garnet‐bearing domains. Pseudosection calculations in the model system NCFMASHTO (Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) yield PT estimates of 820–870 °C and 8.4–9.7 kbar. Ion microprobe U–Pb zircon dating reveals that the NW‐ and N‐trending mafic dykes were emplaced at 1764 ± 25 and 1232 ± 12 Ma, respectively, whereas their metamorphic ages cluster between 957 ± 7 and 938 ± 9 Ma. The identification of granulite facies mineral inclusions in metamorphic zircon domains is also consistent with early Neoproterozoic metamorphism. Therefore, the southwestern margin of the Vestfold Block is inferred to have been buried to depths of ~30–35 km beneath the Rayner orogen during the late stage of the late Mesoproterozoic/early Neoproterozoic collision between the Indian craton and east Antarctica (i.e. the Lambert Terrane or the Ruker craton including the Lambert Terrane). The lack of penetrative deformation and intensive fluid–rock interaction in the rigid Vestfold Block prevented the nucleation and growth of garnet and resulted in the heterogeneous granulite facies metamorphism of the mafic dykes.  相似文献   
4.
Palaeoproterozoic metasedimentary migmatite reflects the highest temperature parts of a regional aureole at Mt Stafford, central Australia, comprising rocks that experienced 500–800 °C at ≈3 kbar. Whole‐rock major element concentrations are correlated with Zr content, psammitic compositions having nearly twice the Zr content of pelitic compositions. Zirconium is concentrated in mesosome compared with leucosome. Zircon is largely detrital, mostly lacking any overgrowth contemporary with migmatite formation. Comparatively small proportions of micro‐zircon (<10 μm) in sub‐solidus rocks are mostly hosted by quartz and plagioclase. Much higher proportions (three to five times) of micro‐zircon in migmatite are hosted by prograde K‐feldspar, cordierite and biotite. TX and PT NCKFMASHTZr pseudosections constructed using thermocalc model the distribution of Zr between solid and silicate liquid phases. Half of the detrital zircon (~100 ppm Zr) is predicted to be dissolved into silicate liquid at ≈800 °C and all dissolved by 850 °C, if all zircon is involved in the equilibration volume. Melt segregation at relatively low temperature is predicted to enrich the residuum in Zr, consistent with the observed distribution of Zr between mesosome and leucosome. The limited development of metamorphic zircon rims or overgrowths at Mt Stafford is explained by three concurrent processes: (i) Zr liberated during prograde metamorphism formed micro‐zircon, rather than following the prediction that Zr will partition into silicate liquid; (ii) some detrital zircon was probably armoured by other rock‐forming minerals, reducing Zr content in the effective bulk rock composition; and (iii) small proportions of melt loss during migmatization removed Zr that otherwise would have been available to form metamorphic rims.  相似文献   
5.
Deep, elongated incisions, often referred to as tunnel valleys, are among the most characteristic landforms of formerly glaciated terrains. It is commonly thought that tunnel valleys were formed by meltwater flowing underneath large ice sheets. The sedimentary infill of these features is often highly intricate and therefore difficult to predict. This study intends to improve the comprehension of the sedimentology and to establish a conceptual model of tunnel‐valley infill, which can be used as a predictive tool. To this end, the densely sampled, Pleistocene tunnel valleys in Hamburg (north‐west Germany) were investigated using a dataset of 1057 deep wells containing lithological and geophysical data. The stratigraphic correlations and the resulting three‐dimensional lithological model were used to assess the spatial lithological distributions and sedimentary architecture. The sedimentary succession filling the Hamburg area tunnel valleys can be subdivided into three distinct units, which are distinguished by their inferred depositional proximity to the ice margin. The overall trend of the succession shows a progressive decrease in transport energy and glacial influence through time. The rate of glacial recession appears to have been an important control on the sedimentary architecture of the tunnel‐valley fill. During periods of stagnation, thick ice‐proximal deposits accumulated at the ice margin, while during rapid recession, only a thin veneer of such coarse‐grained sediments was deposited. Ice‐distal and non‐glaciogenic deposits (i.e. lacustrine, marine and terrestrial) fill the remaining part of the incision. The infill architecture suggests formation and subsequent infill of the tunnel valleys at the outer margin of the Elsterian ice sheet during its punctuated northwards recession. The proposed model shows how the history of ice‐sheet recession determines the position of coarse‐grained depocentres, while the post‐glacial history controls the deposition of fines through a progressive infill of remnant depressions.  相似文献   
6.
7.
Abstract— We report here the petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300 (SaU 300). SaU 300 is dominated by a fine‐grained crystalline matrix surrounding mineral fragments (plagioclase, pyroxene, olivine, and ilmenite) and lithic clasts (mainly feldspathic to noritic). Mare basalt and KREEPy rocks are absent. Glass melt veins and impact melts are present, indicating that the rock has been subjected to a second impact event. FeNi metal and troilite grains were observed in the matrix. Major element concentrations of SaU 300 (Al2O3 21.6 wt% and FeO 8.16 wt%) are very similar to those of two basalt‐bearing feldspathic regolith breccias: Calcalong Creek and Yamato (Y‐) 983885. However, the rare earth element (REE) abundances and pattern of SaU 300 resemble the patterns of feldspathic highlands meteorites (e.g., Queen Alexandra Range (QUE) 93069 and Dar al Gani (DaG) 400), and the average lunar highlands crust. It has a relatively LREE‐enriched (7 to 10 x CI) pattern with a positive Eu anomaly (?11 x CI). Values of Fe/Mn ratios of olivine, pyroxene, and the bulk sample are essentially consistent with a lunar origin. SaU 300 also contains high siderophile abundances with a chondritic Ni/Ir ratio. SaU 300 has experienced moderate terrestrial weathering as its bulk Sr concentration is elevated compared to other lunar meteorites and Apollo and Luna samples. Mineral chemistry and trace element abundances of SaU 300 fall within the ranges of lunar feldspathic meteorites and FAN rocks. SaU 300 is a feldspathic impact‐melt breccia predominantly composed of feldspathic highlands rocks with a small amount of mafic component. With a bulk Mg# of 0.67, it is the most mafic of the feldspathic meteorites and represents a lunar surface composition distinct from any other known lunar meteorites. On the basis of its low Th concentration (0.46 ppm) and its lack of KREEPy and mare basaltic components, the source region of SaU 300 could have been within a highland terrain, a great distance from the Imbrium impact basin, probably on the far side of the Moon.  相似文献   
8.
In this Letter the five-dimensional Kaluza-Klein cosmological model is studied in the presence of a massless scalar field, whose potential has a flat part. By use of the polynomial relation between the two scale factors, inflationary solutions are obtained. The results show that the scale factor corresponding to the extra dimension is either constant or varies inversely as some power of the usual scale factor.  相似文献   
9.
We explore the tectono‐magmatic processes in the western West Philippine Basin, Philippine Sea Plate, using bathymetric data acquired in 2003 and 2004. The northwestern part of the basin formed through a series of northwestward propagating rifts. We identify at least five sequences of propagating rifts, probably triggered by mantle flow away from the mantle thermal anomaly that is responsible for the origin of the Benham and Urdenata plateaus. Gravitational forces caused by along‐axis topographic gradient and a ~30° ridge reorientation appear to also be driving the rift propagations. The along‐axis mantle flow appears to be reduced and deflected along the Luzon‐Okinawa fracture zone, because the spreading system remained stable west of this major fault zone. North‐east of the Benham plateau, a left‐lateral fracture zone has turned into a NE–SW‐trending spreading axis. As a result, a microplate developed at the triple junction.  相似文献   
10.
Abstract– The Ritland structure is a newly discovered impact structure, which is located in southwestern Norway. The structure is the remnant of a simple crater 2.5 km in diameter and 350 m deep, which was excavated in Precambrian gneissic rocks. The crater was filled by sediments in Cambrian times and covered by thrust nappes of the Caledonian orogen in the Silurian–Devonian. Several succeeding events of uplift, erosion, and finally the Pleistocene glaciations, disclosed this well‐preserved structure. The erosion has exposed brecciated rocks of the original crater floor overlain by a thin layer of melt‐bearing rocks and postimpact crater‐filling breccias, sandstones, and shales. Quartz grains with planar deformation features occur frequently within the melt‐bearing unit, confirming the impact origin of the structure. The good exposures of infilling sediments have allowed a detailed reconstruction of the original crater morphology and its infilling history based on geological field mapping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号