首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   5篇
  2012年   1篇
  2001年   1篇
  1967年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有5条查询结果,搜索用时 156 毫秒
1
1.
The Strathcona iron-nickel-copper sulfide ore deposit lies atthe base of the Sudbury Nickel Irruptive along the north rimof the Sudbury basin. In the vicinity of the deposit the mainbody of the Nickel Irruptive consists of an upper unit of 3700ft (1200 m) of granophyre (the ‘micropegmatite’)and a lower unit of 1500 ft (500 m) of augite norite (the ‘felsicnorite’) separated by 300 ft (100 m) of transitional rock(the ‘transition zone’). Two augite norite intrusions(the ‘mafic norite’ and the ‘xenolithic norite’)that are younger than the felsic norite occur along its lowercontact. The xenolithic norite is relatively rich in xenolithsand grades downwards into a unit known as the ‘hanging-wallbreccia’. The breccia resembles the xenolithic noritebut contains a higher proportion of xenoliths. A quartz-plagioclase-augite gneiss (the ‘footwall gneiss’)underlies all units of the Nickel Irruptive. A cataclastic breccia(the ‘footwall breccia’) which formed as a resultof comminution of both gneiss and overlying Irruptive rocksis present in most areas between the gneiss and the Nickel Irruptive.The ore body occurs partly as a dissemination of sulfides inthe matrix of the hanging-wall breccia (‘hanging-wallore’), partly as a fine dissemination and massive stringersof sulfide in the footwall breccia matrix (‘main-zoneore’), and partly as massive stringers of sulfide in thefootwall gneiss (‘deep-zone ore’). Xenoliths in the xenolithic norite and hanging-wall brecciarange from dunite to olivine gabbro. Olivine in the xenoliths(composition estimated by an X-ray method) varies from Fo73to Fo85, and hypersthene and augite (composition estimated byelectron microprobe analysis) vary from Fs25 to Fsi3, and Fsi3to Fs5, respectively. The iron content of the mafic mineralsshows a positive correlation with the proportion of felsic mineralsin the xenoliths, suggesting that the xenoliths have been derivedfrom a cryptically layered body of mafic and ultramafic rock.The wide distribution of xenoliths around the margin of theNickel Irruptive coupled with the absence of any obvious externalsource is strong evidence that the xenoliths are cognate, supportingWilson's (1956) proposal that the Irruptive is a funnel-shapedintrusion with a zone of ultramafic rocks towards its base. Hypersthene ranges from Fs33 to Fs28 in the felsic norite, fromFs28 to Fs22 in the mafic norite, and from Fs28 to Fs20 in thexenolithic norite. Augite ranges from Fsl6 to Fs14 in the felsicnorite and from Fs14 to Fsn in both the mafic and xenolithicnorites. The distribution coefficient for iron and magnesiumbetween coexisting augite and hypersthene ranges from 1-0 insome of the xenoliths to 1-5 in some samples of felsic norite,indicating that the two pyroxenes equilibrated at, or near,magmatic temperature. The composition of plagioclase in thefelsic norite, mafic norite, and xenolithic norite is aroundAn65-70 but decreases to An44 in those Irruptive rocks closestto the footwall breccia. The composition of plagioclase withinthe breccia varies between An32 and An43. Sodium metasomatismappears to have affected the breccia and to have spread outto affect adjacent rocks. The concentration of nickel and copper in the sulfides variessystematically across the ore deposit. The nickel content ofiron-nickel sulfides varies between 2-5 and 3 per cent in thehanging-wall ore but increases regularly from 3 per cent to5 or 5-5 per cent from hanging wall to footwall across the main-zoneore. Copper concentration shows a similar but more erratic variation.The variation is attributed to thermal diffusion of nickel andcopper within the main-zone ore along a gradient induced bythe overlying, hot, Nickel Irruptive. The principal opaque minerals in the ore body are, in the orderof their abundance, pyrrho-tite of at least two types, magnetite,pentlandite, chalcopyrite, and pyrite. All of the sulfides inthe hanging-wall ore are the result of exsolution from a high-temperature,pyrrhotite solid solution. Pyrite started to exsolve below 700C, chalcopyrite below 450 C, and pentlandite below 300 C.Monoclinic pyrrhotite formed from the host hexagonal pyrrhotiteprobably between 300 and 250 C. The temperature of formationof the sulfides in the main-zone ore has been obscured by reworkingof the ore after its first emplacement. The principal ore sulfides, pyrrhotite and pentlandite, arecommon throughout the mafic norite, xenolithic norite, and hanging-wallbreccia, occurring in amounts around 5 per cent in most samples.Pyrrhotite and pentlandite are extremely rare in the overlyingfelsic norite where pyrite is the most common sulfide. It occursin amounts between 01 and 0-5 per cent, commonly together withsecondary amphibole after pyroxene. The sulfides in the maficand xenolithic norites and in the hanging-wall breccia occupyspaces interstitial to the silicates, and little or no replacementof silicates by sulfides has occurred. In the main-zone ore,evidence of small-scale replacement of silicates by sulfidesis common. The high percentage of pyrrhotite and pentlandite in the maficand xenolithic norites in contrast to the felsic norite, texturalrelations between sulfides and silicates, and the high temperaturesindicated by the pyroxene distribution coefficients lead tothe conclusion that the hanging-wall sulfides (including thehanging-wall ore) at Strathcona were introduced with these youngernoritic intrusions. Data on the solubility of sulfides in silicatemagmas rule out the possibility that the bulk of the sulfideswere in solution in the noritic magmas; the data support thehypothesis that during intrusion the sulfides were held in suspensionin the in the magmas as droplets of immiscible sulfide-oxideliquid. Calculations on the rate of settling to be expectedfor such sulfide droplets are consistent with this hypothesis.The manner of emplacement of the main-zone ore is less certain;our explanation is that this ore consists of sulfides that originallysettled out of, or collected along, the base of the hanging-wallbreccia zone and were subsequently incorporated in the brecciationthat gave rise to the footwall breccia. The origin of the sulfides at Strathcona is clearly connectedclosely with the origin of the younger noritic intrusions. Asimilar connexion exists between sulfides and young marginalintrusions at many other Sudbury deposits. Jt is possible thatboth sulfides and intrusions are portions of the Nickel Irruptivemagma that lagged behind the main body of magma and were intrudedat a later stage. Alternatively, the young intrusions may haveassimilated sulfides from a sulfide-rich zone within or at themargin of the deeper layers of the Irruptive.  相似文献   
2.
Kyanite‐ and phengite‐bearing eclogites have better potential to constrain the peak metamorphic P–T conditions from phase equilibria between garnet + omphacite + kyanite + phengite + quartz/coesite than common, mostly bimineralic (garnet + omphacite) eclogites, as exemplified by this study. Textural relationships, conventional geothermobarometry and thermodynamic modelling have been used to constrain the metamorphic evolution of the Tromsdalstind eclogite from the Tromsø Nappe, one of the biggest exposures of eclogite in the Scandinavian Caledonides. The phase relationships demonstrate that the rock progressively dehydrated, resulting in breakdown of amphibole and zoisite at increasing pressure. The peak‐pressure mineral assemblage was garnet + omphacite + kyanite + phengite + coesite, inferred from polycrystalline quartz included in radially fractured omphacite. This omphacite, with up to 37 mol.% of jadeite and 3% of the Ca‐Eskola component, contains oriented rods of silica composition. Garnet shows higher grossular (XGrs = 0.25–0.29), but lower pyrope‐content (XPrp = 0. 37–0.39) in the core than the rim, while phengite contains up to 3.5 Si pfu. The compositional isopleths for garnet core, phengite and omphacite constrain the P–T conditions to 3.2–3.5 GPa and 720–800 °C, in good agreement with the results obtained from conventional geothermobarometry (3.2–3.5 GPa & 730–780 °C). Peak‐pressure assemblage is variably overprinted by symplectites of diopside + plagioclase after omphacite, biotite and plagioclase after phengite, and sapphirine + spinel + corundum + plagioclase after kyanite. Exhumation from ultrahigh‐pressure (UHP) conditions to 1.3–1.5 GPa at 740–770 °C is constrained by the garnet rim (XCaGrt = 0.18–0.21) and symplectite clinopyroxene (XNaCpx = 0.13–0.21), and to 0.5–0.7 GPa at 700–800 °C by sapphirine (XMg = 0.86–0.87) and spinel (XMg = 0.60–0.62) compositional isopleths. UHP metamorphism in the Tromsø Nappe is more widespread than previously known. Available data suggest that UHP eclogites were uplifted to lower crustal levels rapidly, within a short time interval (452–449 Ma) prior to the Scandian collision between Laurentia and Baltica. The Tromsø Nappe as the highest tectonic unit of the North Norwegian Caledonides is considered to be of Laurentian origin and UHP metamorphism could have resulted from subduction along the Laurentian continental margin. An alternative is that the Tromsø Nappe belonged to a continental margin of Baltica, which had already been subducted before the terminal Scandian collision, and was emplaced as an out‐of‐sequence thrust during the Scandian lateral transport of nappes.  相似文献   
3.
Rocks occurring in narrow shear zones (<4 m wide) in a gabbro–anorthositenear Nusfjord, Flakstadøy, Lofoten, Norway, include Cl-enrichedmineral assemblages, Cl-free mineral assemblages and eclogite-faciesassemblages. Mineral equilibria calculations suggest that thedifferent mineral assemblages formed under similar pressureand temperature conditions, at P = 11–14 kbar and T =650–700°C. One reason for the mineralogical variationsof the shear zones is that the rocks evolved from three distinctlydifferent protolith types. Interactions between the rocks andan externally derived Cl-bearing hydrous fluid during shearzone formation resulted in a strong fractionation of the hydrousfluid, and extreme compositional variations of the hydrous mineralphases that formed in equilibrium with the fluid. Parts of theshear zone rocks experienced multiple infiltrations of fluidsof different compositions because of local fluctuations of thefluid phase during the fluid–rock interactions. Duringthe deformation, the externally derived fluid was introducedthrough the transiently highly permeable central parts of theshear zones. The fraction of the fluid that did not escape wasrapidly consumed during subsequent hydration reactions. KEY WORDS: shear zone; fluid–rock reaction; Lofoten; Norway  相似文献   
4.
The Ni-S System and Related Minerals   总被引:1,自引:0,他引:1  
The system Ni-S has been studied systematically from 200? to1, 030? C by means of evacuated, sealed silica-glass tube experimentsand differential thermal analyses. Compounds in the system areNi3S2 (and a high temperature, non-quenchable Ni3?S2 phase),Ni7S6, Ni1–S4 Ni3S4, and NiS2. The geologic occurrenceof the minerals heazlewoodite (Ni2S2), millerite (ßSNi1-2S),polydymite (Ni3S4), and vaesite (NiS2) can now be describedin terms of the stability ranges of their synthetic equivalents. Hexagonal heazlewoodite, which is stoichiometric within thelimit of error of the experiments, inverts on heating to a tetragonalor pseudotetragonal phase at 556? C. This high-temperature phase(Ni3 has a wide field of stability, from 23.5 to 30.5 wt percent sulfur at 600? C, and melts incongruently at 806??3? C.The ßNi7S6 phase inverts to Ni78 at 397? C6 when inequilibrium with Ni3S2, and at 400? C when in equilibrium withNiS. Crystals of Ni7S6 break down to Ni3-S2+NiS at 573??3?C.The low-temperature form of Ni1-S1 corresponding to the mineralmillerite, is rhombohedral, and the high-temperature form hasthe hexagonal NiAs structure. Stoichiometric NiS inverts at379??3?C, whereas Ni1-S with the maximum nickel deficiency invertsat 282??5OC. The Ni1-alphS-NiS2 solvus was determined to 985??3?C,the eutectic temperature of these phases. Stoichiometric NiSis stable at 600?C but breaks down to Ni2-S2 and Ni1-S below797?C, whereas Ni1-S with 38.2 wt per cent sulfur melts congruentlyat 992??3?C. Vaesite does not vary measurably from stoichiometricNiS2 composition, and melts congruently at 1.007?5?C. Polydymitebreaks down to aNi-S? vaesite at 356??3?C. Differential thermalanalyses showed the existence of a two-liquid field in the sulfur-richportion of the system above 991?C and over a wide compositionalrange.  相似文献   
5.
Thermal Stability of Assemblages in the Cu--Fe--S System   总被引:1,自引:0,他引:1  
The phase relations in the Cu-Fe-S system were determined from700 C to approximately 200 C in most portions of the systemand below 100 C in restricted areas. Approximate solid solutionlimits for bornite, chalcopyrite, and pyrrhotite were determinedat elevated temperatures. At low temperatures emphasis was placedon establishing the stable assemblages and less on determiningthe compositions of coexisting phases. At 700 C two extensiveternary solid solutions dominate the phase relations in thissystem. One of these solid solutions (bornite) includes thecompositions Cu2S, Cu18S, and Cu5FeS4and the other (chalcopyrite)lies with in the area bounded by the compositions CuFeS2 CuFe2S3,and CU3Fe4S4. The two fields are separated by approximately10 weight per cent copper at 700 C. The chalcopyrite volume,as seen in a trigonal prism representing temperature and composition,is intersected by a miscibility gap below approximately 600C.Below this temperature the two one-phase volumes are referredto as chalcopyrite and cubanite. Chalcopyrite is tetragonalat low temperature but isometric above approximately 550C.The temperature of the transformation is a function of composition.Cubanite is isometric above 252C, tetragonal from 252 to atleast 213C, and orthorhombic at lower temperature. The temperatureof the second transformation is unknown because the tetragonal-to-orthorhombictransformation has not been achieved in the laboratory. Borniteand pyrite become stable together at 568C and coexist downto 228C. Covellite appears with lowering temperature at 507C,and idaite at 501C. Idaite—pyrite and idaite—borniteare stable assemblages below 501 C. The composition of bornitecoexisting with idaite changes gradually towards digenite withdecreasing temperature, thus permitting the change from thebornite—pyrite tie-line to the digenite—chalcopyritetie-line at 228C. Other major tie-line changes are bornite—ironto pyrrhotite—copper below 475C and cubanite—pyriteto chalcopyrite—pyrrhotite below 334C. A new syntheticphase, x-bornite, which has a composition close to bornite (Cu5FeS4)but contains about 04 weight per cent more sulfur, forms whensulfur-rich bornite synthesized at high temperature is annealedbetween 62 and 140C. Optically this new phase is very similarto bornite, and their X-ray powder diffraction patterns aregiven for comparison. o The determined phase relations are applicable to numerous deposits.The tie-line changes involving bornitepyrite reacting to producedigenitechalcopyrite below 228 C and cubanite (isometric)pyritegoing to chalcopyritepyrrhotite below 334 C are of considerablegeological interest. The rates of these reactions are sufficientlyslow to allow the higher temperature assemblages to be observedin some ores. The cubic—tetragonal inversion in chalcopyriteis often deduced in ores by inversion twins. However, twinningis also commonly produced through deformation. Geological applicationof the inversion therefore depends on correct interpretationof the twinning. Because of the considerable solubility of copperin pyrrhotite the pyrrhotite—pyrite solvus of the pureFe—S system cannot be applied indiscriminately to oresthat also contain chalcopyrite or cubanite, or both. The newx-bornite phase was identified with the natural ‘anomalousbornites’, which when heated exsolve chalcopyrite and,depending on their composition, also digenite. The experimental results indicate that the mineral commonlyidentified as chalcopyrrhotite is in reality tetragonal or evenisometric cubanite. Experimental evidence could not be obtainedfor the existence of a phase of Cu2Fe4S7 or Cu2Fe4S7 composition,the older formulae given foor valleriite. The thermal breakdownof natural material supports the idea that valleriite is a low-temperaturepolymorph of chalcopyrite. The relatively uncommon occurrenceof idaite in comparison to covellite is attributed to the greaterdifficulty in nucleating idaite. The possibility of stable coexistenceof chalcocite and pyrite was investigated but was found to beprohibited by tie-lines between bornite and digenite even aslow as 100 C.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号