首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   1篇
  国内免费   1篇
测绘学   8篇
大气科学   2篇
地球物理   20篇
地质学   52篇
海洋学   1篇
天文学   2篇
自然地理   1篇
  2022年   4篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   9篇
  2014年   1篇
  2013年   11篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1984年   1篇
排序方式: 共有86条查询结果,搜索用时 515 毫秒
1.
From the experimental studies in recent years, it has become known that when a wave breaks directly on a vertical faced coastal structure, high magnitude impact pressures are produced. The theoretical and experimental studies show that the dynamic response of such structures under wave impact loading is closely dependent on the magnitude and duration of the load history. The dynamic analysis and design of a coastal structure can be succeeded provided the design load history for the wave impact is available. Since these types of data are very scarce, it is much more convenient to follow a method which is based on static analysis for the dynamic design procedure. Therefore, to facilitate the dynamic design of a vertical plate that is exposed to breaking wave impact, a multiplication factor called “dynamic magnification factor” is herein presented which is defined as the ratio of the maximum value of the dynamic response to that found by static analysis. The computational results of the present study show that the dynamic magnification factor is a useful ratio to transfer the results of static analysis to the dynamic design of a coastal plate for the maximum impact pressure conditions of pmaxH0≤18.  相似文献   
2.
Argillaceous rocks cover about one thirds of the earth's surface. The major engineering problems encountered with weak- to medium-strength argillaceous rocks could be slaking, erosion, slope stability, settlement, and reduction in strength. One of the key properties for classifying and determining the behavior of such rocks is the slake durability. The concept of slake durability index (SDI) has been the subject of numerous researches in which a number of factors affecting the numerical value of SDI were investigated. In this regard, this paper approaches the matter by evaluating the effects of overall shape and surface roughness of the testing material on the outcome of slake durability indices.

For the purpose, different types of rocks (marl, clayey limestone, tuff, sandstone, weathered granite) were broken into chunks and were intentionally shaped as angular, subangular, and rounded and tested for slake durability. Before testing the aggregate pieces of each rock type, their surface roughness was determined by using the fractal dimension. Despite the variation of final values of SDI test results (values of Id), the rounded aggregate groups plot relatively in a narrow range, but a greater scatter was obtained for the angular and subangular aggregate groups. The best results can be obtained when using the well rounded samples having the lowest fractal values. An attempt was made to analytically link the surface roughness with the Id parameter and an empirical relationship was proposed. A chart for various fractal values of surface roughness to use as a guide for slake durability tests is also proposed. The method proposed herein becomes efficient when well rounded aggregates are not available. In such condition, the approximate fractal value for the surface roughness profile of the testing aggregates could be obtained from the proposed chart and be plugged into the empirical relation to obtain the corrected Id value. The results presented herein represent the particular rock types used in this study and care should be taken when applying these methods to different type of rocks.  相似文献   

3.
It has been observed that the field biodegradation rates for soluble hydrocarbon plumes are significantly smaller than the aerobic rates observed in the laboratory. It is believed that this difference is related to the fact that in the field oxygen and hydrocarbon must be mixed before the biodegradation reaction can occur, and that the effective degradation rate is controlled by the actual, not mean, concentrations of oxygen and hydrocarbon. In this work, we present a conceptual model of oxygen-mixing limited biodegradation, which indicates that the effective degradation rate should depend on the cross correlation between the oxygen and hydrocarbon concentration fluctuations. This is followed by a development of a rigorous, field-scale model.  相似文献   
4.
5.
Blueschist facies rocks in the Yuli Belt of Taiwan's Central Range record ongoing subduction of the Eurasian plate. We present a prograde Lu–Hf garnet–whole‐rock age of 5.1 ± 1.7 Ma from a retrogressed blueschist in the Yuli Belt. This age is considerably younger than the previously assumed age of 14–8 Ma for high‐pressure metamorphism in the Yuli Belt and represents the youngest Lu–Hf garnet age ever recorded for blueschist facies metamorphism. The age sheds new light on the palaeogeographic origin and exhumation scenario of the Yuli Belt. We propose that the Yuli Belt originated from the ocean–continent boundary of the Chinese passive margin. It was subducted eastward during collision with the Luzon island arc and rapidly exhumed when the forearc lithosphere was removed from above the continental slab by discrete subduction (extraction). This process reduces the pressure above the continental slab and may prompt the ascent of subducted crust into the opening gap. Thus, it can control the exhumation of high‐pressure rocks.  相似文献   
6.
7.
8.
Curved surface sliding bearings, which are usually called as friction pendulum system (FPS) are commonly used for base isolation of liquid storage tanks since the period of the isolation system is independent of the storage level. However the restoring force and the damping at the isolation system are functions of axial load which changes during an earthquake excitation. This change might be in appreciable amounts especially for the tanks with high aspect ratios. The present paper focuses on earthquake performances of both broad and slender tanks base isolated by FPS bearings. The effects of overturning moment and vertical acceleration on axial load variation at the bearings are considered. The efficiency of the isolation system is investigated by analyzing the effects of various parameters such as; (i) isolation period, (ii) tank aspect ratio and (iii) coefficient of friction. The Haroun and Housner's three-degrees-of-freedom lumped mass model was used to solve the governing equations of motion in which convective, impulsive and rigid masses were included. A number of selected ground motions were considered and the results were compared to those of non-isolated cases.As a result, base isolation was found to be effective in reducing the base shear values for both broad and slender tanks without significantly affecting the sloshing displacements of the broad ones. The efficiency was even more pronounced for slender tanks subjected to near fault ground motions for isolation periods above 3 s. This specific value of isolation period also eliminated possible design problems arising from under-estimation of base shear values (up to 40%) due to ignoring the effects of axial load variation in lower isolation periods. Overturning effects should not be ignored especially for tanks with high aspect ratios (S) and being subjected to near fault ground motion.  相似文献   
9.
Eocene to Early Oligocene syn-rift deposits of the southern Upper Rhine Graben (URG) accumulated in restricted environments. Sedimentation was controlled by local clastic supply from the graben flanks, as well as by strong intra-basinal variations in accommodation space due to differential tectonic subsidence, that in turn led to pronounced lateral variations in depositional environment. Three large-scale cycles of intensified evaporite sedimentation were interrupted by temporary changes towards brackish or freshwater conditions. They form three major base level cycles that can be traced throughout the basin, each of them representing a stratigraphic sub-unit. A relatively constant amount of horizontal extension (ΔL) in the range of 4–5 km has been estimated for the URG from numerous cross-sections. The width of the rift (L f ), however, varies between 35 and more than 60 km, resulting in a variable crustal stretching factor between the bounding masterfaults. Apart from block tilting, tectonic subsidence was, therefore, largely controlled by changes in the initial rift width (L 0). The along-strike variations of the graben width are responsible for the development of a deep, trough-like evaporite basin (Potash Basin) in the narrowest part of the southern URG, adjacent to shallow areas in the wider parts of the rift such as the Colmar Swell in the north and the Rhine Bresse Transfer Zone that delimits the URG to the south. Under a constant amount of extension, the along-strike variation in rift width is the principal factor controlling depo-centre development in extensional basins.  相似文献   
10.

The Genç District is located on the Bingöl Seismic Gap (BSG) of the Eastern Anatolian Fault Zone (EAFZ) with its?~?34.000 residents. The Karl?ova Triple Junction, where the EAFZ, the North Anatolian Fault Zone, and the Varto Fault Zone meet, is only 80 km NE of the Genç District. To make an earthquake disaster damage prediction of the Genç District, carrying a high risk of disaster, we have (1) prepared a new geological map, and (2) conducted a single-station microtremor survey. We defined that three SW-NE trending active faults of the sinistral Genç Fault Zone are cutting through the District. We have obtained dominant period (T) as?<?0.2 s, the amplification factor (A) between 8 and 10, the average shear wave velocity for the first 30 m (Vs30) as?<?300 m/s, and the seismic vulnerability index (Kg) as?>?20, in the central part of the Genç District. We have also prepared damage prediction maps for three bedrock acceleration values (0.25, 0.50, 0.75 g). Our earthquake damage prediction scenarios evidenced that as the bedrock acceleration values increase, the area of soil plastic behavior expands linearly. Here we report that if the average expected peak ground acceleration value (0.55–0.625 g) is exceeded during an earthquake, significant damage would be inevitable for the central part of the Genç District where most of the schools, mosques, public buildings, and hospitals are settled-down.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号