首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
测绘学   1篇
地球物理   4篇
地质学   6篇
  2022年   1篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
排序方式: 共有11条查询结果,搜索用时 93 毫秒
1.
Mandal  Prantik  Srinagesh  D.  Vijayaraghavan  R.  Suresh  G.  Naresh  B.  Raju  P. Solomon  Devi  Aarti  Swathi  K.  Singh  Dhiraj K.  Srinivas  D.  Saha  Satish  Shekar  M.  Sarma  A. N. S.  Murthy  YVVBSN 《Natural Hazards》2022,111(3):2241-2260
Natural Hazards - Since the initial collision at 55 Ma, rocks of the Indian crust below the Himalayas have undergone modification chemically and compositionally due to the ongoing...  相似文献   
2.
A total of 162 groundwater samples for three representative seasons were collected from Salem district of Tamilnadu, India to decipher hydrogeochemistry and groundwater quality for determining its suitability for drinking and agricultural proposes. The water is neutral to alkaline in nature with pH ranging from 6.6 to 8.6 with an average of 8.0. Higher electrical conductivity was observed during post-monsoon season. The abundance of major ions in the groundwater was in the order of $ {\text{Na} > \text{Ca} > \text{Mg} > \text{K} = \text{Cl} > \text{HC}}{{\text{O}}_3}\; > \;{\text{S}}{{\text{O}}_4}\; > \;{\text{N}}{{\text{O}}_3} $ . Piper plot reveals the dominance of geochemical facies as mixed Ca–Mg–Cl, Na–Cl, Ca–HCO3, Ca–Na–HCO3, and Ca–Cl type. NO3, Cl, SO4, and F exceed the permissible limit during summer and post-monsoon seasons. Sodium adsorption ratio was higher during post-monsoon and southwest monsoon season indicating high and low salinity, satisfactory for plants having moderate salt tolerance on soils. Permeability index of water irrespective of season falls in class I and class II indicating water is moderate to good for irrigation purposes. As per the classification of water for irrigation purpose, water is fit for domestic and agricultural purposes with minor exceptions irrespective of seasons.  相似文献   
3.
The main objective of the study is to identify groundwater potential zones in Thirumanimuttar basin with an integrated approach using Remote Sensing and geographical information system(GIS).FCC Image of Landsat TM 30 m resolution data and topographic maps has been used to generate thematic maps like geology,geomorphology,lineament and lineament density,drain-age,drainage density,and slope map of the study area.A number of geomorphic units such as Denudational hills,structural hills,Bajadas,Colluvial plain,Pediplain,Deep Pediment and Alluvial plains have been observed.A composite groundwater potential map has been generated as very high,high,medium,low and very low based on the groundwater availability area.The upper,mid-dle and downstream of the basins have been identified as potential zones for groundwater exploration.The regions of lineaments and intersecting lineaments proved for groundwater potential zones.The data generated was validated with field checks and ob-served to be in conformity with the same.  相似文献   
4.
A study was carried in Mettur taluk, Salem district of Tamilnadu, India to develop a DRASTIC vulnerability index in GIS environment owing to groundwater pollution with increasing population, industries, and agricultural activities. Seven DRASTIC layers were created from available data (depth to water table, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity) and incorporated into DRASTIC model to create a groundwater vulnerability map by overlaying the hydrogeological parameters. The output map indicates southwestern part of the study area with high pollution potential, northern and northwestern parts as moderate pollution potential and northeastern parts as low and no risk of pollution potential. For validating the vulnerability assessment, a total of 46 groundwater samples were collected from different vulnerability zones of the study area for two different seasons (pre- and post-monsoon) and analyzed for major anions and cations. Higher ionic concentrations were noted in wells located near highly industrialized, urbanized, and agricultural active zones. The water types represent Na–Mg–HCO3 and Na–Cl–HCO3 type indicating dominance of anthropogenic-related activities. Nitrate and chloride were demarcated as pollution indicators and correlated with DRASTIC vulnerability map. The results show that southwestern, northwestern, and northern parts of the study area recorded with high and moderate vulnerable zones, record higher nitrate values. In contrast to DRASTIC method predicted, low vulnerable zones show higher chloride concentration may be due to agricultural and urban development.  相似文献   
5.
The present work investigated the biosorption of nickel from synthetic and electroplating industrial effluents using a green marine algae Ulva reticulata. Preliminary batch results imply that pH 4.5 was optimum for nickel uptake and the isotherm experiments conducted at this pH condition indicated that U. reticulata can biosorb 62.3 mg g–1 nickel ions from synthetic solutions, according to the Langmuir model. Desorption was effective and practical using 0.1 M CaCl2 (pH 2.5, HCl) and the biomass was regenerated and reused for three cycles. Continuous biosorption experiments were performed in an upflow packed column (2 cm I.D and 35 cm height). Among the two electroplating effluents used, effluent‐1 is characterized by excess co‐ions and high nickel ion content. This influenced the column nickel uptake with U. reticulata exhibiting 52.1 mg g–1 in the case of effluent‐1 compared to 56.5 mg g–1 in the case of synthetic solution. On the other hand U. reticulata performed well in effluent‐2 with uptakes of 53.3 and 54.3 mg g–1 for effluent‐2 and synthetic solution, respectively. Mathematical modeling of column experimental data was performed using nonlinear forms of the Thomas‐ and modified dose‐response models, with the latter able to simulate breakthrough curves with high correlation coefficients.  相似文献   
6.
Thirumanimuttar sub-basin is of particular importance in the study of groundwater quality due to the release of effluents from industries, agricultural, sewage and urban runoff, brining considerable change in water quality. An investigation was carried out by collecting a total of 194 groundwater samples for two seasons to decipher hydrogeochemistry and groundwater quality for determining its suitability for agricultural purposes. The water is neutral to alkaline in nature with pH ranging from 6.78 to 9.22 with an average of 7.37. Higher electrical conductivity (EC) was noted in NW and mid-downstream parts of the study area. Higher NO 3 ? was observed during post-monsoon (POM) due to the action of leaching and anthropogenic process. The piper plot reveals the dominance of Na+?CCl? and Na+?CHCO 3 ? , mixed Ca2+?CNa+?CHCO 3 ? , mixed Ca2+?CMg2+?CHCO 3 ? and Ca2+?CSO 4 ? types of hydrogeochemical facies. Higher total hardness in the groundwater is due to the effect of dyeing and bleaching industries discharging effluents affects the quality of water. Residual Sodium Carbonate value indicates 56% of the samples are not suitable for irrigation purposes in both seasons. Higher sodium percentage is noted during PRM indicating the dominance of ion exchange and weathering. Higher sodium adsorption ratio was observed during POM indicating the effect of leaching and dissolution of salts into the aquifer matrix. USSL plot indicates 15% of samples record high salinity to medium sodicity. The Permeability Index indicates water is moderate to good for irrigation purposes. In general, groundwater in the study area is influenced by both natural and anthropogenic activities.  相似文献   
7.
An eco‐friendly and inexpensive technique for wastewater treatment originated from inductively coupled plasma‐optical emission spectrometry (ICP‐OES) is presented within this paper. The proposed process comprised of loading waste crab shells in packed column for adsorption of heavy metal ions, followed by desorption using 0.01 M HCl. An exhaustive physical and chemical characterization of ICP‐OES wastewater revealed the complex nature of effluent, including the presence of 15 different metals and metalloid under strong acidic condition (pH 1.3). Based on the preliminary batch experiments, it was identified that solution pH played a major role in metal sequestration by crab shell with pH 3.5 identified as optimum pH. Rapid metal biosorption kinetics along with complete desorption and subsequent reuse for three cycles was possible with crab shell‐based treatment process. Continuous flow‐through column experiments confirmed the high performance of crab shell towards multiple metal ions with the column able to operate for 22 h at a flow rate of 10 mL/min before outlet concentration of arsenic reached 0.25 times of its inlet concentration. Other metal ions such as Cu, Cd, Co, Cr, Pb, Ni, Zn, Mn, Al, and Fe were only in trace levels in the treated water until 22 h. The performance of the treatment process was compared with trade effluent discharge standards, and the process flow diagram along with cost analysis was suggested.  相似文献   
8.
Biodegradation of naphthalene by Micrococcus sp., isolated from the effluent of an activated sludge plant, was studied. The effects of pH (5–8), glucose concentration (100–1000 mg/L) and inoculum concentrations (1–5%) on the growth and naphthalene degradation potential of Micrococcus sp. were investigated. Maximum naphthalene degradation and subsequent high microbial growth were observed at optimum pH (pH 7), glucose concentration (500 mg/L) and inoculum concentration (3%). To investigate the maximum naphthalene tolerance potential of Micrococcus sp., very high concentrations of naphthalene (500–5000 mg/L) were used in the presence of non‐ionic surfactants. The examined surfactants (Triton X‐100 and Tween‐80) increased the bioavailability of naphthalene to the microbes and Complete naphthalene degradation by Micrococcus sp. was observed at an initial naphthalene concentration of 500 mg/L. However, the degradation potential decreases as the naphthalene concentration increases. Very high naphthalene concentrations also affected the growth of microbes and the corresponding substrate inhibition kinetics was described using four models (Haldane, Webb, Edward and Aiba). Based on correlation coefficient and percentage error values, all four substrate kinetic models were able to describe the dynamic behavior of naphthalene biodegradation by Micrococcus sp.  相似文献   
9.
A hydrogeochemical investigation was conducted in a coastal region of Cuddalore district to identify the influence of saltwater intrusion and suitability of groundwater for domestic and agricultural purposes. The geology of the study area comprises of sandstone, clay, alluvium, and laterite soils of Tertiary and Quaternary age. A total of 18 groundwater samples were analyzed for 14 different water quality parameters and the result indicates higher concentrations of ions like Cl (3,509 mg/l), Na (3,123 mg/l), and HCO3 (998 mg/l) when compared with WHO, BIS, and ISI standards. A positive correlation (r 2?=?0.82) was observed between Na and Cl, indicating its sources from salt water intrusion. Three factors were extracted with a total variance of 64% which indicates the sources of salinization, cation exchange, and anthropogenic impact to the groundwater. The Piper trilinear diagram indicates both Na–Cl and mixed Na–HCO3–Cl-type, indicating that groundwater was strongly affected by anthropogenic activities. The plot of (Ca?+?Mg)/(K?+?Na) indicates evidences of cation exchange and salt water intrusion. The (Ca–0.33*HCO3)/ SO4 plot indicates salt water intrusion for elevated SO4 levels rather than gypsum dissolution. The spatial distribution of total dissolved solid indicates the saline water encroachment along the SW part of the study area. As per sodium adsorption ratio (SAR), 50% of the samples with <10 SAR are suitable for irrigation and >10 SAR indicates that water is unsuitable for irrigation purposes. The residual sodium carbonate classification indicates that 50% of the samples fall in safe and 50% of the samples fall in bad zones and prolonged usage of this water will affect the crop yield. The Chloro Alkaline Index of water indicates disequilibrium due to a higher ratio of Cl?>?Na–K, indicating the influence of salt water intrusion. The Permeability Index of the groundwater indicates that the groundwater from the study area is moderate to good for irrigation purposes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号