首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   3篇
综合类   1篇
  2022年   1篇
  2018年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
Karanganyar and the surrounding area are situated in a dynamic volcanic arc region, where landslide frequently occurs during the rainy season. The rain-induced landslide disasters have been resulting in 65 fatalities and a substantial socioeconomical loss in last December 2007. Again, in early February 2009, 6 more people died, hundreds of people temporary evacuated and tens of houses damaged due to the rain-induced landslide. Accordingly, inter-disciplinary approach for geological, geotechnical and social investigations were undertaken with the goal for improving community resilience in the landslide vulnerable villages. Landslide hazard mapping and community-based landslide mitigation were conducted to reduce the risk of landslides. The hazard mapping was carried out based on the susceptibility assessment with respect to the conditions of slope inclination, types and engineering properties of lithology/soil as well as the types of landuse. All of those parameters were analyzed by applying weighing and scoring system which were calculated by semi qualitative approach (Analytical Hierarchical Process). It was found that the weathered andesitic-steep slope (steeper than 30o) was identified as the highest susceptible slope for rapid landslide, whilst the gentle colluvial slope with inter-stratification of tuffaceous clay-silt was found to be the susceptible slope for creeping. Finally, a programme for landslide risk reduction and control were developed with special emphasize on community-based landslide mitigation and early warning system. It should be highlighted that the social approach needs to be properly addressed in order to guarantee the effectiveness of landslide risk reduction.  相似文献   
3.
Landslides - A World Tsunami Awareness Day Special Event was held in hybrid mode on 5 November 2021, during the Fifth World Landslide Forum, in Kyoto, Japan. In this context, a panel discussion was...  相似文献   
4.
An early warning system has been developed to predict rainfall-induced shallow landslides over Java Island, Indonesia. The prototyped early warning system integrates three major components: (1) a susceptibility mapping and hotspot identification component based on a land surface geospatial database (topographical information, maps of soil properties, and local landslide inventory, etc.); (2) a satellite-based precipitation monitoring system () and a precipitation forecasting model (i.e., Weather Research Forecast); and (3) a physically based, rainfall-induced landslide prediction model SLIDE. The system utilizes the modified physical model to calculate a factor of safety that accounts for the contribution of rainfall infiltration and partial saturation to the shear strength of the soil in topographically complex terrains. In use, the land-surface “where” information will be integrated with the “when” rainfall triggers by the landslide prediction model to predict potential slope failures as a function of time and location. In this system, geomorphologic data are primarily based on 30-m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data, digital elevation model (DEM), and 1-km soil maps. Precipitation forcing comes from both satellite-based, real-time National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM), and Weather Research Forecasting (WRF) model forecasts. The system’s prediction performance has been evaluated using a local landslide inventory, and results show that the system successfully predicted landslides in correspondence to the time of occurrence of the real landslide events. Integration of spatially distributed remote sensing precipitation products and in-situ datasets in this prototype system enables us to further develop a regional, early warning tool in the future for predicting rainfall-induced landslides in Indonesia.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号