首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   3篇
  2016年   1篇
  2008年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Experimental phase equilibrium and trace element partitioningdata are reported for H2O-saturated mid-ocean ridge basalt at2·5 GPa, 750–900°C and oxygen fugacities atthe nickel–nickel oxide buffer. Garnet, omphacite andrutile are present at all temperatures. Amphibole and epidotedisappear as residual phases above 800°C; allanite appearsabove 750°C. The Na–Al-rich silicate glass presentin all run products is likely to have quenched from a supercriticalliquid. Trace element analyses of glasses demonstrate the importantcontrol exerted by residual minerals on liquid chemistry. Inaddition to garnet, which controls heavy rare earth elements(HREE) and Sc, and rutile, which controls Ti, Nb and Ta, allanitebuffers the light REE (LREE; La–Sm) contents of liquidsto relatively low levels and preferentially holds back Th relativeto U. In agreement with previous experimental and metamorphicstudies we propose that residual allanite plays a key role inselectively retaining trace elements in the slab during subduction.Experimental data and analyses of allanite-bearing volcanicrocks are used to derive a model for allanite solubility inliquids as a function of pressure, temperature, anhydrous liquidcomposition and LREE content. The large temperature dependenceof allanite solubility is very similar to that previously determinedfor monazite. Our model, fitted to 48 datapoints, retrievesLREE solubility (in ppm) to within a factor of 1· 40over a pressure range of 0–4 GPa, temperature range of700–1200°C and for liquids with anhydrous SiO2 contentsof 50–84 wt %. This uncertainty in LREE content is equivalentto a temperature uncertainty of only ± 27°C at 1000K, indicating the potential of allanite as a geothermometer.Silicic liquids from either basaltic or sedimentary protolithswill be saturated in allanite except for Ca-poor protolithsor at very high temperatures. For conventional subduction geothermsthe low solubility of LREE (+ Th) in liquids raises questionsabout the mechanism of LREE + Th transport from slab to wedge.It is suggested either that, locally, temperatures experiencedby the slab are high enough to eliminate allanite in the residueor that substantial volumes of H2O-rich fluids must pass throughthe mantle wedge prior to melting. The solubility of accessoryphases in fluids derived from subducted rocks can provide importantconstraints on subduction zone thermal structure. KEY WORDS: subduction; experimental petrology; allanite; solubility; supercritical liquid; eclogite  相似文献   
2.
The Wangrah Suite granites (Lachlan Fold Belt, Australia) reflect different stages of differentiation in the magmatic history of an A-type plutonic suite. In this study we use experimentally determined phase equilibria of four natural A-type granitic compositions of the Wangrah Suite to constrain phases and phase compositions involved in fractionation processes. Each composition represents a distinct granite intrusion in the Wangrah Suite. The intrusions are the Danswell Creek (DCG), Wangrah (WG), Eastwood (EG) and Dunskeig Granite (DG), ordered from “most mafic” to “most felsic” by increasing SiO2 and decreasing FeOtotal.

Experimental investigation show that the initial water content in melts from DCG is between 2–3 wt. % H2O. If the DCG is viewed as the parental magma for the Wangrah Suite, then (1) fractionation of magnetite, orthopyroxene and plagioclase ( 20 wt. %) of the DCG composition, leads to compositions similar to that of the EG; (2) further fractionation of plagioclase, quartz, K-feldspar and biotite ( 40 wt. %) from the EG composition, leads to the DG composition. These fractionation steps can occur nearly isobarically and are confirmed by bulk rock Ba, Sr, Rb and Zr concentrations.

In contrast, the generation of the most abundant WG composition cannot be explained by fractional crystallisation from the DCG at isobaric conditions because of the high K2O content of this granite. Magma Mixing could be the process to explain the chemical distinctiveness of the Wangrah Granite from all the other granites of the Wangrah Suite.  相似文献   

3.
Clinopyroxene is an essential mineral in eclogitic rocks. It commonly contains minor amounts of the defect-bearing Ca-Eskola (CaEs, Ca0.50.5AlSi2O6) component, with higher concentrations generally considered to indicate a high-pressure origin at least within the coesite stability field. Changes in pressure and temperature conditions can lead to exsolution of this component as a free SiO2 phase, which may have a number of petrological implications. This makes it important to understand the factors that maximize CaEs incorporation in clinopyroxene. We have undertaken a series of experiments at high pressures and temperatures (4–10 GPa and 1000–1350 °C) to further investigate the systematics of CaEs incorporation in eclogite-like clinopyroxene and the factors responsible for maximizing CaEs contents. Two simple chemical systems were chosen that allow unambiguous interpretation of the results: (1) CMAS + H2O and (2) two compositions in the NCMAS system. All experimental products contained clinopyroxene and garnet along with either a free SiO2 phase or a silicate melt. Coexisting garnet is grossular-rich, generally with X gr ≥ 0.67. Compositional variations are attributable to the presence or absence of melt and changes in modal amounts of garnet at different pressure–temperature conditions. Even small amounts of H2O lower the solidus temperature and the presence of a melt reduces the SiO2 activity, which destabilizes the CaEs component in clinopyroxene. The CaEs and the Ca-Tschermaks (CaTs, CaAl2SiO6) components in clinopyroxene decrease with increasing jadeite mole fraction, which is also a function of pressure and bulk Al content. Modeling X-ray powder diffraction data yields a molar volume for the CaEs endmember of V CaEs = 60.87(63) cm3, which reasonably agrees with a literature value that was estimated from natural samples. In the presence of coexisting coesite, the CaEs and CaTs do not vary independently of each other, being controlled by the internal equilibrium 2CaEs = CaTs + 3SiO2 (coesite). This relation, observed in simple systems (i.e., CMAS ± Na), is also obeyed by clinopyroxene in more complex, natural analog bulk compositions. An assessment of available experimental data reveals a maximum of 15–18 mol% CaEs in eclogitic clinopyroxene at conditions corresponding to 130–180 km depth. CaEs contents are maximized at high temperatures; i.e., at or near the solidus in the presence of coesite. Thus, this study supports the role of CaEs exsolution in contributing to melt generation during upwelling of eclogite bodies in the mantle, albeit with some caveats. Somewhat higher maximum CaEs contents (~20 mol%) are found in Ca and Al-rich bulk compositions, such as grospydite xenoliths. Such bulk compositions also seem to require the coexistence of kyanite. Other Ca and Al-rich rock types, like rodingites, should have the potential of containing CaEs-rich clinopyroxenes, except that they are SiO2-undersaturated. This emphasizes the further role of bulk composition, in addition to high temperatures, in achieving maximum CaEs contents in high-pressure clinopyroxene.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号