首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   2篇
地质学   7篇
海洋学   2篇
  2010年   1篇
  2009年   1篇
  2001年   1篇
  1995年   1篇
  1994年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Faulting in Middle Jurassic reservoirs occurred at shallow depth during regional extension. Clean sandstones (<15% clay) deformed without significant grain fracturing and permeability reduction. Faults in impure sandstones (15–40% clay) experienced significant syn-deformation compaction and permeability reduction. Enhanced compaction during deeper burial reduced their permeabilities further from an average of 0.05 mD at <2.5 km to 0.001 mD at >4 km. Clay-rich sediments (>40% clay) deformed to produce clay smears with very low permeabilities (<0.001 mD). Faulting in the Rotliegendes occurred at greater depth during both basin extension and inversion. Extensional faulting produced cataclasites with permeability reductions of <10–>106; their permeabilities range from 0.2 to 0.0001 mD and are inversely related to their maximum burial depth. Faults formed or reactivated during inversion experienced permeability increase. These results can be extrapolated to other hydrocarbon reservoirs if differences in stress and temperature history are taken into account.The permeability of most (>80%) faults is not sufficiently low, compared to their wallrock, to retard single-phase fluid flow on a km-scale. Nevertheless, most faults could retard the flow of a non-wetting phase if present at low saturations. It may be necessary to incorporate the two-phase fluid flow properties of fault rocks into reservoir simulators using upscaling or pseudoisation techniques. Fault property data should be calibrated against production data before it can be used confidently.  相似文献   
2.
Quartz c axis fabrics and microstructures have been investigated within a suite of quartzites collected from the Loch Eriboll area of the Moine Thrust zone and are used to interpret the detailed processes involved in fabric evolution. The intensity of quartz c axis fabrics is directly proportional to the calculated strain magnitude. A correlation is also established between the pattern of c axis fabrics and the calculated strain symmetry.Two kinematic domains are recognized within one of the studied thrust sheets which outcrops immediately beneath the Moine Thrust. Within the upper and central levels of the thrust sheet coaxial deformation is indicated by conjugate, mutually interfering shear bands, globular low strain detrital quartz grains whose c axes are aligned sub-parallel to the principal finite shortening direction (Z) and quartz c axis fabrics which are symmetric (both in terms of skeletal outline and intensity distribution) with respect to mylonitic foliation and lineation. Non-coaxial deformation is indicated within the more intensely deformed and recrystallized quartzites located near the base of the thrust sheet by single sets of shear bands and c axis fabrics which are asymmetric with respect to foliation and lineation.Tectonic models offering possible explanations for the presence of kinematic (strain path) domains within thrust sheets are considered.  相似文献   
3.
A study of normal faults in the Nubian Sandstone Sequence, from the eastern Gulf of Suez rift, has been conducted to investigate the relationship between the microstructure and petrophysical properties of cataclasites developed along seismic-scale faults (slip-surface cataclasites) and smaller displacement faults (deformation bands) found in their damage zones. The results help to quantify the uncertainty associated with predicting the fluid flow behaviour of seismic-scale faults by analysing small faults recovered from core, a common procedure in the petroleum industry. The microstructure of the cataclasites was analysed as well as their single-phase permeability and threshold pressure. Faulting occurred at a maximum burial depth of ∼1.2 km. The permeability of deformation band and slip-surface cataclasites varies over ∼1.5 orders of magnitude for a given fault. Our results suggest that the lowest measured deformation band permeabilities provide a good estimate for the arithmetic-mean permeability of the major slip-surface cataclasites. This is because the cataclastic permeability reduction is mostly established early in the deformation history. Stress at the time of faulting rather than final strain appears to be the critical factor determining fault rock permeability. For viable predictions it is important that the slip-surface cataclasites and deformation bands originate from the same host. On the other hand, a higher uncertainty is associated with threshold pressure predictions, as the arithmetic-mean slip-surface cataclasite threshold pressure exceeds the highest measured deformation band threshold pressure by at least a factor of 4.  相似文献   
4.
Deformation in low grade shear zones in the Old Red Sandstone,S.W. Wales   总被引:1,自引:0,他引:1  
Shear zones in sandstones of the Old Red Sandstone at Marloes Sands, S. W. Wales show three stages in their microstructural evolution. The initial phase is dominated by microfracturing and infilling of dilation sites with secondary quartz. This stage occurs before any significant shear displacement parallel to the shear zone borders. The second phase is associated with increased intracrystalline plasticity accompanying shear displacement in the zones. The third phase is characterized by heterogeneous deformation and recrystallization concentrated in zones marking cleavage planes. The high bubble content of grains influenced the sub-grain formation and recrystallization behaviour.  相似文献   
5.
6.
The inter-relationships between the exact footwall geometry and the rheology of thrust sheets are investigated. Deviations in the thrust fault surface from an ideal plane will induce a local heterogeneous deformation. The resulting deformation processes depend upon the rate of thrust sheet displacement, the geometry of the feature causing heterogeneous flow, the deformation conditions and the lithologies involved. Two classes of features are particularly important in causing heterogeneous deformation in thrust sheets. The first features are small perturbations on bedding planes which may be inherited sedimentary structures or produced during layer-parallel shortening; the second class of features are ramps, where the thrust sheet climbs up the stratigraphic section. Displacement over these features causes repeated, cyclic straining in the hanging-wall during movement. The strain rates associated with deformation at perturbations, ramps of different geometries and different displacement rates are estimated and used to discuss the influence of footwall geometry on the structural evolution of a thrust sheet. Particular attention is given to the range of fault rocks and deformation microstructures preserved after movement over a footwall with a complex geometry. Perturbations are suggested to be important in the localization of ramps, either because they create ‘sticking points’ near the fault tip during propagation or because they induce eventual failure in the hanging-wall after the movement over a number of these features raises the accumulated damage to a critical level. Analysis of the influence of the exact geometry of ramps on deformation processes during displacement leads to two important conclusions. Firstly, the exact geometry of ramps (i.e. the maximum dip angle and the straining distance from a flat to this maximum angle) may be used to estimate a maximum displacement rate of the thrust sheet. Secondly, the listric geometry of ramps may be an equilibrium shape adjusted to the displacement rate and the rheology of the hanging-wall. Adjustments towards the final geometry may involve the generation of shortcuts on either hanging- or footwall which reduce the imposed deformation rate in the hanging-wall during displacement.  相似文献   
7.
Macroscopic fracture arrays, microstructures and interpreted deformation mechanisms are used to assess the development of a minor reverse fault (backthrust) in quartzite from the Moine Thrust Zone, Assynt, NW Scotland. Fracturing dominates the faulting via the progression: intragranular extension microcracks; transgranular, cataclasite absent extension fractures; through-going, cataclasite filled shear microfaults, within which fracturing and particulate flow operate. However, both diffusive mass transfer (DMT) and intracrystalline plasticity (low temperature plasticity, LTP) processes also contribute to the fault zone deformation and lead to distinct associations of deformation mechanisms (e.g., DMT-fracture and LTP-fracture or low-temperature ductile fracture, LTDF). Over a large range of scales the fault zone consists of blocks of relatively intact rock separated by narrow zones of intense deformation where fracture processes dominate. The populations of fragments/blocks of different sizes in the fault zone have a power-law relationship which is related to the dimension of the fault zone. These observations are used to develop a general model for fault zone evolution based on the distribution of deformation features as a function of either time or space. A systematic variation in the deformation rate: time histories is recognised, associated with different positions within the fault zone. Thus, the fault zone preserves elements of the birth, life and death sequences associated with the displacement history and strain accommodation.Dedicated to the memory of Will Ramsbotham (1967–93).  相似文献   
8.
When a mechanically layered section of rock is subject to a horizontal strain, faults often nucleate preferentially in one or more layers before propagating through the rest of the section. The result is a high density of small, low-throw faults within these layers, and a much smaller number of large, through-cutting faults which nevertheless accommodate most of the strain due to their much larger displacement. A dynamic model of fault nucleation and propagation has been created by combining analytical and finite element techniques to calculate the energy balance of these propagating faults. This model shows that: 1) faults may nucleate in either mechanically weak layers, or in stiff layers with a high differential stress; 2) fault propagation may be halted either by strong layers (in which the sliding friction coefficient is high), or by layers which deform by flow and thus have low differential stress. This model can predict quantitatively the horizontal strain required for faults to nucleate, and to propagate across mechanical layer boundaries. The model is able to explain the complex pattern of fault nucleation and propagation observed in a mechanically layered outcrop in Sinai, Egypt.  相似文献   
9.
Microstructure and cleavage development in selected slates   总被引:1,自引:0,他引:1  
A detailed microstructural study of three slates by high voltage transmission electron microscopy is reported. The slates are mineralogically similar, come from minor fold cores and exhibit differing degrees of cleavage intensity. All three slates have domains of orientated phyllosilicates (cleavage lamellae) which contain only a low percentage of quartz and carbonate. Between these lamellae are lenticular domains which contain deformed phyllosilicates and which are enriched in secondary minerals. The initiation of cleavage lamellae can be clearly observed in electron micrographs from one of the slates studied. It occurs along zones of intense deformation, viz. along kinks and microfolds, which form from initial crenulations that are difficult to detect in a petrological microscope.The important observed re-orientation mechanisms of the phyllosilicates during cleavage development in the three slates are strain induced crystallization and the growth of metamorphically stable phyllosilicates together with mechanical rotation. Microstructural evidence suggests that the cleavage lamellae once initiated can extend laterally into the lenticular domains as deformation proceeds. Interference between adjacent phyllosilicates during deformation is commonly observed and resultant extension sites are often enriched in secondary minerals. Chlorite rich pods occur in all of the slates studied and have complex microstructures consisting of both deformed and undeformed phyllosilicates. It is concluded that these pods may form after cleavage initiation.  相似文献   
10.
The distribution of impurity atoms (At. No.> 11) in two naturally deformed quartzites has been determined by microchemical analyses in a scannling transmission electron microscope. The study reveals impurity segregations at sub-grain boundaries and dislocations. The importance of the presence and segregation of impurities other than OH to quartz deformation studies is discussed. It is suggested that the potential role of these impurities on the development and behaviour of deformation microstructures warrants the inclusion of this previously neglected topic into future quartz deformation studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号