首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
地球物理   1篇
地质学   39篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   6篇
  2017年   5篇
  2016年   2篇
  2013年   2篇
  2012年   2篇
  2009年   5篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2003年   1篇
  2001年   1篇
排序方式: 共有40条查询结果,搜索用时 0 毫秒
1.
2.
3.
New data on the mineral composition of the Ozernoye meteorite, found in the Kurgan region in 1983, are presented. It has been found that that the meteorite’s matter is composed of olivine (chrysolite), orthopyroxene (bronzite), clinopyroxene (augite), maskelynite, chromite, ilmenite, metals Fe and Ni (kamasite, taenite), sulfides (troilite, pentlandite), chlorapatite, and merrillite. Augite, taenite, pentlandite, and merrillite were identified in the Ozernoye meteorite for the first time. The chemical compositions are given for all these minerals. The meteorite itself is an ordinary chondrite stone belonging to petrological type L5.  相似文献   
4.

A fragment of the Sverdlovsk Meteorite, which was found in 1985 in the Central Urals, is studied by modern analytical methods. It belongs to H chondrites of petrologic type 4–5; shock stage of meteorite is S1-2, terrestrial weathering is W1. The composition of minerals of the meteorite is studied. It is found for the first time that the metal and sulfides are concentrated in fine veinlets of the recrystallized matrix of the chondrite and are accompanied by segregations of metal and troilite inside these veinlets. The distribution of trace elements of the metal phase of the meteorite is studied.

  相似文献   
5.
Doklady Earth Sciences - The study of granites in the basement of the Western Siberian platform is highly relevant since they are associated with hydrocarbon deposits, which are located not only...  相似文献   
6.
On the basis of a representative collection of ultramafic rocks and chromite ores and a series of technological samples from the largest (Central and Western) deposits in the Rai-Iz massif of the Polar Urals and the Almaz-Zhemchuzhina and Poiskovy deposits in the Kempirsai massif of the southern Urals, the distribution and speciation of platinum-group elements (PGE) in various type sections of mafic-ultramafic massifs of the Main ophiolite belt of the Urals have been studied. Spectral-chemical and spectrophotometric analyses were carried out to estimate PGE in 700 samples of ultramafic rocks and chromite ores; 400 analyses of minerals from rocks, ores, and concentrates and 100 analyses of PGE minerals (PGM) in chromite ores and concentrates were performed using an electron microprobe. Near-chondritic and nonchondritic PGE patterns in chromitebearing sections have been identified. PGE mineralization has been established to occur in chromite ore from all parts of the mafic-ultramafic massifs in the Main ophiolite belt of the Urals. The PGE deposits and occurrences discovered therein are attributed to four types (Kraka, Kempirsai, Nurali-Upper Neiva, and Shandasha), which are different in mode of geological occurrence, geochemical specialization, and placer-forming capability. Fluid-bearing minerals of the pargasite-edenite series have been identified for the first time in the matrix of chromite ore of the Kempirsai massif (the Almaz-Zhemchuzhina deposit) and Voikar-Syn’ya massif (the Kershor deposit). The PGE grade in various types of chromite ore ranges from 0.1–0.2 to 1–2 g/t or higher. According to technological sampling, the average PGE grade in the largest deposits of the southeastern ore field of the Kempirsai massif is 0.5–0.7 g/t. Due to the occurrence of most PGE as PGM 10–100 mm in size and the proved feasibility of their recovery into nickel alloys, chromites of the Kempirsai massif can be considered a complex ore with elevated and locally high Os, Ir, and Ru contents. The Nurali-Upper Neiva type of ore is characterized by small-sized primary deposits, which nevertheless are the main source of large Os-Ir placers in the Miass and Nev’yansk districts of the southern and central Urals, respectively.  相似文献   
7.
The SHRIMP-II zircon U-Pb dates for metamorphic rocks from the West Siberian basement are determined for the first time. It is established that the major protolith of the metamorphic strata from the Shaimsk-Kuznetsovsk meganticlinorium is composed of sedimentary Late- and Middle-Devonian rocks (395–398 Ma). It is likely that the greywackes, whose strata were mainly formed under erosion of ophiolitic rocks, served as a substrate for the metamorphic rocks. The metamorphic transformations of the rocks occurred under conditions of greenschist and occasionally lower amphibolite facies of metamorphism during the Late Carboniferous-Early Permian period.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号