首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   2篇
地质学   3篇
天文学   1篇
自然地理   2篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2008年   2篇
  2007年   3篇
排序方式: 共有8条查询结果,搜索用时 250 毫秒
1
1.
The Nasu Observatory, which is composed of eight 20 m elements, was constructed for observing radio transients over a wide field at 1400 MHz. We report on two radio transients detected in consecutive drift scanning observations at declination 32° over a period of about two months. One of the two transients, WJN J1039+3200, appeared at =10h39m40s±10s, δ=32°±0.4° on March 4, 2005, and the other one, WJN J0645+3200, appeared at =06h45m25s±10s, δ=32°±0.4° on March 24, 2005. Both exhibited flux densities in excess of 1 Jy, and the burst durations were up to two days. Since there are few examples of radio transients outside the Galactic plane, these are very important observations. We have previously reported on four radio transients with features that look like the two transients detected this time. Of these six WJN transients in total, five had a duration of up to two days, and one up to three days. Four of the transients were detected at high Galactic latitude of b > 30°. Counterparts of the six WJN transients included X-ray sources in four events and had a consistency of 66%. The consistency of γ-ray, PGC Galaxy, NVSS, and FIRST sources was concentrated at about 50%. We were not able to find any special features in the counterparts. The distribution was verified by making a log N–log S plot using data for the four previously detected transients and the new ones. As a result, the distribution of the radio transients that we observed might have an isotropic distribution not dependent on Galactic longitude and Galactic latitude. The detection probability was calculated based on the assumption of an isotropic distribution. The 2σ upper probability limit for detection of transients of 1000 mJy or more is 0.0049 [deg−2 yr−1]. We cannot yet identify these two radio transients, because their features are different from any radio bursts observed in the past.  相似文献   
2.
Topography is a dominant factor in hillslope hydrology. TOPMODEL, which uses a topographical index derived from a simplified steady state assumption of mass balance and empirical equations of motion over a hillslope, has many advantages in this respect. Its use has been demonstrated in many small basins (catchment areas of the order of 2–500 km2) but not in large basins (catchment areas of the order of 10 000–100 000 km2). The objective of this paper is to introduce the Block‐wise TOPMODEL (BTOP) as an extension of the TOPMODEL concept in a grid based framework for distributed hydrological simulation of large river basins. This extension was made by redefining the topographical index by using an effective contributing area af(a) (0?f(a)?1) per unit grid cell area instead of the upstream catchment area per unit contour length and introducing a concept of mean groundwater travel distance. Further the transmissivity parameter T0 was replaced by a groundwater dischargeability D which can provide a link between hill slope hydrology and macro hydrology. The BTOP model uses all the original TOPMODEL equations in their basic form. The BTOP model has been used as the core hydrological module of an integrated distributed hydrological model YHyM with advanced modules of precipitation, evapotranspiration, flow routing etc. Although the model has been successfully applied to many catchments around the world since 1999, there has not been a comprehensive theoretical basis presented in such applications. In this paper, an attempt is made to address this issue highlighted with an example application using the Mekong basin. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
3.
Floods are regular feature in rapidly urbanizing Dhaka, the capital city of Bangladesh. It is observed that about 60% of the eastern Dhaka regularly goes under water every year in monsoon due to lack of flood protection. Experience gathered from past devastating floods shows that, besides structural approach, non-structural approach such as flood hazard map and risk map is effective tools for reducing flood damages. In this paper, assessment of flood hazard by developing a flood hazard map for mid-eastern Dhaka (37.16 km2) was carried out by 1D hydrodynamic simulation on the basis of digital elevation model (DEM) data from Shuttle Radar Topography Mission and the hydrologic field-observed data for 32 years (1972–2004). As the topography of the area has been considerably changed due to rapid land-filling by land developers which was observed in recent satellite image (DigitalGlobe image; Date of imagery: 7th March 2007), the acquired DEM data were modified to represent the current topography. The inundation simulation was conducted using hydrodynamic program HEC-RAS for flood of 100-year return period. The simulation has revealed that the maximum depth is 7.55 m at the southeastern part of that area and affected area is more than 50%. A flood hazard map was prepared according to the simulation result using the software ArcGIS. Finally, to assess the flood risk of that area, a risk map was prepared where risk was defined as the product of hazard (i.e., depth of inundation) and vulnerability (i.e., the exposure of people or assets to flood). These two maps should be helpful in raising awareness of inhabitants and in assigning priority for land development and for emergency preparedness including aid and relief operations in high-risk areas in the future.  相似文献   
4.
Several recent extreme natural events resulted in great humanitarian tragedies because of weak preventive disaster management. Here we analyze several factors (natural, economical, political, awareness, and preparedness) that brought about the humanitarian tragedies of the early 21st century. We discuss then the role of science in the preventive disaster management of extreme natural events.  相似文献   
5.
改进的BTOPMC模型及其在水文模拟中的应用   总被引:2,自引:0,他引:2  
In this paper, a grid-based distributed hydrological model BTOPMC (Block-wise use of TOPMODEL) is introduced, which was developed from the original TOPMODEL. In order to broaden the model's application to arid regions, improvement methodology is also implemented. The canopy interception and soil infiltration processes were incorporated into the original BTOPMC to model event-based runoff simulation in large arid regions. One designed infiltration model with application of time compression approximation method is emphasized and validated for improving model's performance for event hydrological simulations with a case study of Lushi River basin.  相似文献   
6.
Abstract

This study modified the BTOPMC (Block-wise TOPMODEL with the Muskingum-Cunge routing method) distributed hydrological model to make it applicable to semi-arid regions by introducing an adjustment coefficient for infiltration capacity of the soil surface, and then applied it to two catchments above the dams in the Karun River basin, located in semi-arid mountain ranges in Iran. The application results indicated that the introduced modification improved the model performance for simulating flood peaks generated by infiltration excess overland runoff at a daily time scale. The modified BTOPMC was found to fulfil the need to reproduce important signatures of basin hydrology for water resource development, such as annual runoff, seasonal runoff, low flows and flood flows. However, it was also very clear that effective model use was significantly constrained by the scarcity of ground-gauged precipitation data. Considerable efforts to improve the precipitation data acquisition should precede water resource development planning.

Editor D. Koutsoyiannis  相似文献   
7.
8.
In this paper, a grid-based distributed hydrological model BTOPMC (Block-wise use of TOPMODEL) is introduced, which was developed from the original TOPMODEL. In order to broaden the model’s application to arid regions, improvement methodology is also implemented. The canopy interception and soil infiltration processes were incorporated into the original BTOPMC to model event-based runoff simulation in large arid regions. One de-signed infiltration model with application of time compression approximation method is emphasized and validated for improving model’s performance for event hydrological simulations with a case study of Lushi River basin.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号