首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
地球物理   3篇
地质学   8篇
天文学   1篇
  2022年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2006年   2篇
  2001年   1篇
  1999年   1篇
排序方式: 共有12条查询结果,搜索用时 46 毫秒
1.
Remote sensing observations by recent successful missions to small bodies have revealed the difficulty in classifying the materials which cover their surfaces into a conventional classification of meteorites. Although reflectance spectroscopy is a powerful tool for this purpose, it is influenced by many factors, such as space weathering, lighting conditions, and surface physical conditions (e.g., particle size and style of mixing). Thus, complementary information, such as elemental compositions, which can be obtained by X‐ray fluorescence (XRF) and gamma‐ray spectrometers (GRS), have been considered very important. However, classifying planetary materials solely based on elemental compositions has not been investigated extensively. In this study, we perform principal component and cluster analyses on 12 major and minor elements of the bulk compositions of 500 meteorites reported in the National Institute of Polar Research (NIPR), Japan database. Our unique approach, which includes using hierarchical cluster analysis, indicates that meteorites can be classified into about 10 groups purely by their bulk elemental compositions. We suggest that Si, Fe, Mg, Ca, and Na are the optimal set of elements, as this set has been used successfully to classify meteorites of the NIPR database with more than 94% accuracy. Principal components analysis indicates that elemental compositions of meteorites form eight clusters in the three‐dimensional space of the components. The three major principal components (PC1, PC2, and PC3) are interpreted as (1) degree of differentiations of the source body (i.e., primitive versus differentiated), (2) degree of thermal effects, and (3) degree of chemical fractionation, respectively.  相似文献   
2.
Tertiary volcanic rocks in northwestern Firoozeh, Iran (the Meshkan triangular structural unit), constitute vast outcrops (up to 250 km2) of high-Mg basaltic andesites to dacites that are associated with high-Nb hawaiites and mugearites. Whole-rock 40Ar/39Ar ages show a restricted range of 24.1 ± 0.4–22.9 ± 0.5 Ma for the volcanic rocks. The initial ratios of 87Sr/86Sr and 143Nd/144Nd vary from 0.703800 to 0.704256 and 0.512681 to 0.512877, respectively, in the high-Mg basaltic andesites–dacites. High-Th contents (up to 11 ppm) and Sr/Y values (27–100) and the isotopic composition of the subalkaline high-Mg basaltic andesites–dacites indicate derivation from a mantle modified by slab and sediment partial melts. Evidence such as reverse zoning and resorbed textures and high Ni and Cr contents in the evolved samples indicate that magma mixing with mafic melts and concurrent fractional crystallization lead to the compositional evolution of this series. The high-Nb hawaiites and mugearites, by contrast, have a sodic alkaline affinity and are silica undersaturated; they are also enriched in Nb (up to 47 ppm) and a wide range of incompatible trace elements, including LILE, LREE, and HFSE. Geochemistry and Sr–Nd isotopic compositions of the high-Nb hawaiites and mugearites suggest derivation from a mantle source affected by lower degrees of slab melts. Post-orogenic slab break-off is suggested to have prompted the asthenospheric upwelling that triggered partial melting in mantle metasomatized by slab-derived melts.  相似文献   
3.
Internal differentiation processes in a solidifying lava flow were investigated for the Kutsugata lava flow from Rishiri Volcano in northern Japan. In a representative 6-m thick lava flow that was investigated in detail in this study, segregation products darker than the host lavas manifested mainly in the form of pipes (vesicle cylinders) and layers (vesicle sheets), occurring around 0.5–2.3 m and 2.0–4.0 m above the base, respectively. Both the cylinders and sheets are significantly richer in incompatible elements such as TiO2 and K2O than the host lavas, which suggest that these products essentially represent residual melt produced during solidification of the lava flow. Field observation and the geochemical features of the lavas suggest that the vesicle cylinders grew upward from near the base of the flow by continuous feeding of residual melt from the neighboring host lavas to the heads of the cylinders. On the other hand, the vesicle sheets were produced in situ in the solidifying lava flow as fracture veins caused by horizontal compression. The vesicle cylinders have a remarkably higher MgO content (up to 8 wt.%) than the host lava (< 6 wt.%), whereas the vesicle sheets display MgO depletion (as low as 3.5 wt.%). The relatively high MgO content of the vesicle cylinders cannot be explained solely by the mechanical mixing of olivine phenocrysts with the residual melt. It is suggested that the vesicle cylinders were produced by the extraction of olivine-bearing interstitial melt from an augite-plagioclase network in the host lava, whereas the vesicle sheets were formed by the migration of the residual melt from a crystal network consisting of plagioclase, augite, and olivine in the host lava into platy fractures. We infer that this selective crystal fractionation for forming the vesicle cylinders resulted from processes in which abundant vesicles rejected from the upward-migrating floor solidification front prevented olivine crystals from being incorporated into the crystal network in the host lava. The vesicle cylinders are considered to have formed in ∼ 1 day after the lava flow came to rest, while relatively large vesicle sheets (> 1 cm thick) appeared much later (after ∼ 9 days). The formation of these segregation products was essentially complete within 20 days after the lava emplacement.  相似文献   
4.
The mechanisms and the timescales of magmatic evolution were investigated for historical lavas from the Askja central volcano in the Dyngjufjöll volcanic massif, Iceland, using major and trace element and Sr, Nd, and Pb isotopic data, as well as 238U-230Th-226Ra systematics. Lavas from the volcano show marked compositional variation from magnesian basalt through ferrobasalt to rhyolite. In the magnesian basalt-ferrobasalt suite (5-10 wt% MgO), consisting of lavas older than 1875 A.D., 87Sr/86Sr increases systematically with increasing SiO2 content; this suite is suggested to have evolved in a magma chamber located at ∼600 MPa through assimilation and fractional crystallization. On the other hand, in the ferrobasalt-rhyolite suite (1-5 wt% MgO), including 1875 A.D. basalt and rhyolite and 20th century lavas, 87Sr/86Sr tends to decrease slightly with increasing SiO2 content. It is suggested that a relatively large magma chamber occupied by ferrobasalt magma was present at ∼100 MPa beneath the Öskjuvatn caldera, and that icelandite and rhyolite magmas were produced by extraction of the less and more evolved interstitial melt, respectively, from the mushy boundary layer along the margin of the ferrobasalt magma chamber, followed by accumulation of the melt to form separate magma bodies. Ferrobasalt and icelandite lavas in the ferrobasalt-rhyolite suite have a significant radioactive disequilibrium in terms of (226Ra/230Th), and its systematic decrease with magmatic evolution is considered to reflect aging, along with assimilation and fractional crystallization processes. Using a mass-balance model in which simultaneous fractional crystallization, crustal assimilation, and radioactive decay are taken into account, the timescale for the generation of icelandite magma from ferrobasalt was constrained to be <∼3 kyr which is largely dependent on Ra crystal-melt partition coefficients we used.  相似文献   
5.
Rates of magmatic processes in a cooling magma chamber wereinvestigated for alkali basalt and trachytic andesite lavaserupted sequentially from Rishiri Volcano, northern Japan, bydating of these lavas using 238U–230Th radioactive disequilibriumand 14C dating methods, in combination with theoretical analyses.We obtained the eruption age of the basaltic lavas to be 29·3± 0·6 ka by 14C dating of charcoals. The eruptionage of the andesitic lavas was estimated to be 20·2 ±3·1 ka, utilizing a whole-rock isochron formed by U–Thfractionation as a result of degassing after lava emplacement.Because these two lavas represent a series of magmas producedby assimilation and fractional crystallization in the same magmachamber, the difference of the ages (i.e. 9 kyr) is a timescaleof magmatic evolution. The thermal and chemical evolution ofthe Rishiri magma chamber was modeled using mass and energybalance constraints, as well as quantitative information obtainedfrom petrological and geochemical observations on the lavas.Using the timescale of 9 kyr, the thickness of the magma chamberis estimated to have been about 1·7 km. The model calculationsshow that, in the early stage of the evolution, the magma cooledat a relatively high rate (>0·1°C/year), and thecooling rate decreased with time. Convective heat flux fromthe main magma body exceeded 2 W/m2 when the magma was basaltic,and the intensity diminished exponentially with magmatic evolution.Volume flux of crustal materials to the magma chamber and rateof convective melt exchange (compositional convection) betweenthe main magma and mush melt also decreased with time, from 0·1 m/year to 10–3 m/year, and from 1 m/yearto 10–2 m/year, respectively, as the magmas evolved frombasaltic to andesitic compositions. Although the mechanism ofthe cooling (i.e. thermal convection and/or compositional convection)of the main magma could not be constrained uniquely by the model,it is suggested that compositional convection was not effectivein cooling the main magma, and the magma chamber is consideredto have been cooled by thermal convection, in addition to heatconduction. KEY WORDS: convection; magma chamber; heat and mass transport; timescale; U-series disequilibria  相似文献   
6.
To understand the generation and evolution of mafic magmas from Klyuchevskoy volcano in the Kamchatka arc, which is one of the most active arc volcanoes on Earth, a petrological and geochemical study was carried out on time-series samples from the volcano. The eruptive products show significant variations in their whole-rock compositions (52.0–55.5 wt.% SiO2), and they have been divided into high-Mg basalts and high-Al andesites. In the high-Mg basalts, lower-K and higher-K primitive samples (>9 wt.% MgO) are present, and their petrological features indicate that they may represent primary or near-primary magmas. Slab-derived fluids that induced generation of the lower-K basaltic magmas were less enriched in melt component than those associated with the higher-K basaltic magmas, and the fluids are likely to have been released from the subducting slab at shallower levels for the lower-K basaltic magmas than for higher-K basaltic magmas. Analyses using multicomponent thermodynamics indicates that the lower-K primary magma was generated by ~13% melting of a source mantle with ~0.7 wt.% H2O at 1245–1260?°C and ~1.9 GPa. During most of the evolution of the volcano, the lower-K basaltic magmas were dominant; the higher-K primitive magma first appeared in AD 1932. In AD 1937–1938, both the lower-K and higher-K primitive magmas erupted, which implies that the two types of primary magmas were present simultaneously and independently beneath the volcano. The higher-K basaltic magmas evolved progressively into high-Al andesite magmas in a magma chamber in the middle crust from AD 1932 to ~AD 1960. Since then, relatively primitive magma has been injected continuously into the magma chamber, which has resulted in the systematic increase of the MgO contents of erupted materials with ages from ~AD 1960 to present.  相似文献   
7.
The water content of low-K tholeiitic basalt magma from Iwate volcano, which is located on the volcanic front of the NE Japan arc, was estimated using multi-component thermodynamic models. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78–85) correlates positively with the An content of coexisting plagioclase phenocrysts (An85–92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase phenocrysts. It is inferred from these observations that the phenocrysts with variable compositions were primarily derived from mushy boundary layers along the walls of a magma chamber. By using thermodynamic calculations with the observed petrological features of the lavas, the water content of the Iwate magma was estimated to be 4–5 wt.%. The high water content of the magma supports the recent consensus that frontal-arc magmas are remarkably hydrous. Using the estimated water content of the Iwate magma, the water content and temperature of the source mantle were estimated. Given that the Iwate magma was derived from a primary magma solely by olivine fractionation, the water content and temperature were estimated to be ~0.7 wt.% and ~1,310 °C, respectively. Differentiation mechanisms of low-K frontal-arc basalt magmas were also examined by application of a thermodynamics-based mass balance model to the Iwate magma. It is suggested that magmatic differentiation proceeds primarily through fractionation of crystals from the main molten part of a magma chamber when it is located at <~200 MPa, whereas magma evolves through a convective melt exchange between the main magma and mushy boundary layers when the magma body is located at >~200 MPa.  相似文献   
8.
The trachytic Tanetomi lava from Rishiri Volcano, northern Japan, provides useful information concerning how a replenished mafic magma mixes with a compositionally zoned felsic magma in a magma chamber. The Tanetomi lava was erupted in the order of Lower lava 1 (LL1, 59.2-59.8 wt.% in SiO2), Lower lava 2 (LL2, 58.4-59.1 wt.%), and Upper lava (UL, 59.9-65.1 wt.%). Evidence for mixing with a mafic magma is observed only in the LL2, in which a greater amount of crystals derived from the mafic magma occurs in rocks with higher SiO2 content. The whole-rock compositional trend of the Tanetomi lavas is fairly smooth except for the LL2 lava composition, which scatter along the main composition trend. There is no reasonable composition of basaltic magma on the extrapolation of the LL2 composition trend, and the trend cannot be explained by a simple two-component magma mixing. Before the replenishment, the felsic magma was zoned in composition (58-65 wt.% in SiO2) and temperature (1030-920°C) in the magma chamber located at the pressure of ~2 kbar. The compositional variation of the main felsic magma was produced by extraction of a fractionated interstitial melt from mush zones along the chamber walls and its subsequent mixing with the main magma (boundary layer fractionation). The LL1 magma tapped the magma chamber soon after the replenishment, before the mafic magma mixed with the overall felsic magma. Then the basalt magma mixed heterogeneously with the upper part of the felsic magma by forced convection as a fountain during injection. The mixing of the basalt magma with compositionally zoned felsic magma resulted in the characteristic composition trend of the LL2. The fraction of basaltic magma in the LL2 magma is estimated to be at most 10%. Despite such a small proportion, the basalt magma was mixed completely with the felsic magma, probably because the crystallinity of undercooled basalt magma was low enough to behave as a liquid.  相似文献   
9.
In order to unravel magma processes and the geochemical evolution of shallow plumbing systems beneath active volcanoes, we investigated U-series disequilibria of rocks erupted over the past 500 years (1469-2000 AD) from Miyakejima volcano, Izu arc, Japan. Miyakejima volcanic rocks show 238U-230Th-226Ra disequilibria with excess 238U and 226Ra, due to the addition of slab-derived fluids to the mantle wedge. Basaltic bombs of the 2000 AD eruption have the lowest (230Th/232Th) ratio compared to older Miyakejima eruptives, yielding the youngest 238U-230Th model age of 2 kyr. This reinforces our previous model that fluid release from the slab and subsequent magma generation in the mantle wedge beneath Miyakejima occur episodically on a several-kyr timescale. In the last 500 years, Miyakejima eruptives show: (1) a vertical trend in a (230Th/232Th)-(238U/232Th) diagram and (2) a positive linear correlation in a (226Ra/230Th)0 − 1/230Th diagram, which is also observed in lavas from some of the single eruptions (e.g., 1940, 1962, and 1983 AD). The variations cannot be produced by simple fractional crystallization in a magma chamber with radioactive decay of 230Th and 226Ra, but it is possibly produced by synchronous generation of melts in the mantle wedge with different upwelling rate or addition of multiple slab-derived fluids. A much more favorable scenario is that some basaltic magmas were intermittently supplied from deep in the mantle and injected into the crust, subsequently modifying the original magma composition and producing variations in (230Th/232Th) and (226Ra/230Th)0 ratios via assimilation and fractional crystallization (AFC). The assimilant of the AFC process would be a volcanic edifice of previous Miyakejima magmatism. Due to the relatively short timescales involved, the interaction between the assimilant and recent Miyakejima magmatism has not been recorded by the Sr-Nd-Pb isotopic systems. In such cases, Th isotopes and (226Ra/230Th) ratio are excellent geochemical tracers of magmatic evolution.  相似文献   
10.
We report whole-rock geochemistry and Sr–Nd–Pb isotopic compositions of mafic dykes intruded in the Precambrian granito-gneissic basement complex, exposed at Nyos, Batibo, Dschang and Foumban on the Cameroon Line. The dykes are alkaline (Batibo), transitional (Foumban), and subalkaline (Nyos, Batibo and Dschang) with SiO2 of 45–54 wt% and MgO of 2–9 wt%, similar to dykes reported in other areas of the Cameroon Line (CL) and the Central Atlantic Magmatic Province (CAMP). The abundances of rare earth elements (REE) and the Primitive Mantle normalised patterns for the Nyos, Batibo and Dschang dykes are similar to those of MORB, indicating that the dykes formed at shallower depths by a higher degree of partial melting relative to the Foumban dykes and the alkaline lavas of the CL. The transitional basaltic dykes with steeper REE patterns have their sources at deeper levels in the lithospheric mantle, possibly the garnet-spinel transition zone and were generated by a lower degree partial melting of the lithospheric and plume components. The Nyos and Batibo subalkaline dykes show similar isotopic compositions with a spectrum extending from depleted (DMM-like) to enriched (EM1-like) mantle, indicating the similarity in their source components. The Dschang dykes show distinct isotopic characteristics with relatively unradiogenic Nd-Pb isotope compositions compared to the Batibo and Nyos dykes. The Foumban transitional dykes with characteristic wide ranges in Sr-Nd-Pb isotopic compositions reveal varying contributions from enriched mantle components (EM1 and EM2) in addition to its plume signature similar to those of CL lavas. The Nyos and Batibo dykes alongside other dykes on the CL have low TiO2 abundances (<2 wt%), negative PM-normalised Nb-anomalies, and moderately to strongly enriched REE patterns, and isotopic composition that overlaps with those of CAMP, suggesting a similar lithospheric origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号