首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Rhyolite pumices and co-erupted granophyric (granite) xenolithsyield evidence for rapid magma generation and crystallizationprior to their eruption at 15·2 ± 2·9 kaat the Alid volcanic center in the Danikil Depression, Eritrea.Whole-rock U and Th isotopic analyses show 230Th excesses upto 50% in basalts <10 000 years old from the surroundingOss lava fields. The 15 ka rhyolites also have 30–40%230Th excesses. Similarity in U–Th disequilibrium, andin Sr, Nd, and Pb isotopic values, implies that the rhyolitesare mostly differentiated from the local basaltic magma. Giventhe (230Th/232Th) ratio of the young basalts, and presumablythe underlying mantle, the (230Th/232Th) ratio of the rhyolitesupon eruption could be generated by in situ decay in about 50000 years. Limited (5%) assimilation of old crust would hastenthe lowering of (230Th/232Th) and allow the process to takeplace in as little as 30 000 years. Final crystallization ofthe Alid granophyre occurred rapidly and at shallow depths at20–25 ka, as confirmed by analyses of mineral separatesand ion microprobe data on individual zircons. Evidently, 30000–50 000 years were required for extraction of basaltfrom its mantle source region, subsequent crystallization andmelt extraction to form silicic magmas, and final crystallizationof the shallow intrusion. The granophyre was then ejected duringeruption of the comagmatic rhyolites. KEY WORDS: U-series; zircon; ion microprobe; volcano; geochronology  相似文献   
2.
Young (<65 ka) explosive silicic volcanism at Taupo volcano,New Zealand, has involved the development and evacuation ofseveral crustal magmatic systems. Up to and including the 26·5ka 530 km3 Oruanui eruption, magmatic systems were contemporaneousbut geographically separated. Subsequently they have been separatedin time and have vented from geographically overlapping areas.Single-crystal (secondary ionization mass spectrometry) andmultiple-crystal (thermal ionization mass spectrometry) zirconmodel-age data are presented from nine representative eruptiondeposits from 45 to 3·5 ka. Zircon yields vary by threeorders of magnitude, correlating with the degrees of zirconsaturation in the magmas, and influencing the spectra of modelages. Two adjacent magma systems active up to 26·5 kashow wholly contrasting model-age spectra. The smaller systemshows a simple unimodal distribution. The larger system, usingdata from three eruptions, shows bimodal model-age spectra.An older 100 ka peak is interpreted to represent zircons (antecrysts)derived from older silicic mush or plutonic rocks, and a youngerpeak to represent zircons (phenocrysts) that grew in the magmabody immediately prior to eruption. Post-26·5 ka magmabatches show contrasting age spectra, consistent with a mixtureof antecrysts, phenocrysts and, in two examples, xenocrystsfrom Quaternary plutonic and Mesozoic–Palaeozoic metasedimentaryrocks. The model-age spectra, coupled with zircon-dissolutionmodelling, highlight contrasts between short-term silicic magmageneration at Taupo, by bulk remobilization of crystal mushand assimilation of metasediment and/or silicic plutonic basementrocks, and the longer-term processes of fractionation from crustallycontaminated mafic melts. Contrasts between adjacent or successivemagma systems are attributed to differences in positions ofthe source and root zones within contrasting domains in thequartzo-feldspathic (<15 km deep) crust below the volcano. KEY WORDS: zircon; U-series dating; rhyolite; Taupo Volcanic Zone; Taupo volcano  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号