首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   712篇
  免费   24篇
  国内免费   7篇
测绘学   41篇
大气科学   46篇
地球物理   167篇
地质学   196篇
海洋学   114篇
天文学   99篇
综合类   3篇
自然地理   77篇
  2023年   5篇
  2022年   4篇
  2021年   5篇
  2020年   12篇
  2019年   11篇
  2018年   16篇
  2017年   17篇
  2016年   19篇
  2015年   18篇
  2014年   27篇
  2013年   37篇
  2012年   25篇
  2011年   33篇
  2010年   33篇
  2009年   54篇
  2008年   32篇
  2007年   36篇
  2006年   42篇
  2005年   15篇
  2004年   23篇
  2003年   24篇
  2002年   23篇
  2001年   17篇
  2000年   16篇
  1999年   15篇
  1998年   9篇
  1997年   11篇
  1996年   10篇
  1995年   13篇
  1994年   9篇
  1993年   13篇
  1992年   12篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1988年   9篇
  1987年   7篇
  1986年   2篇
  1985年   6篇
  1984年   11篇
  1983年   4篇
  1982年   6篇
  1981年   8篇
  1979年   7篇
  1978年   9篇
  1977年   5篇
  1975年   2篇
  1974年   7篇
  1973年   5篇
  1971年   2篇
排序方式: 共有743条查询结果,搜索用时 20 毫秒
1.
Local glaciers and ice caps (GICs) comprise only ~5.4% of the total ice volume, but account for ~14–20% of the current ice loss in Greenland. The glacial history of GICs is not well constrained, however, and little is known about how they reacted to Holocene climate changes. Specifically, in North Greenland, there is limited knowledge about past GIC fluctuations and whether they survived the Holocene Thermal Maximum (HTM, ~8 to 5 ka). In this study, we use proglacial lake records to constrain the ice‐marginal fluctuations of three local ice caps in North Greenland including Flade Isblink, the largest ice cap in Greenland. Additionally, we have radiocarbon dated reworked marine molluscs in Little Ice Age (LIA) moraines adjacent to the Flade Isblink, which reveal when the ice cap was smaller than present. We found that outlet glaciers from Flade Isblink retreated inland of their present extent from ~9.4 to 0.2 cal. ka BP. The proglacial lake records, however, demonstrate that the lakes continued to receive glacial meltwater throughout the entire Holocene. This implies that GICs in Finderup Land survived the HTM. Our results are consistent with other observations from North Greenland but differ from locations in southern Greenland where all records show that the local ice caps at low and intermediate elevations disappeared completely during the HTM. We explain the north–south gradient in glacier response as a result of sensitivity to increased temperature and precipitation. While the increased temperatures during the HTM led to a complete melting of GICs in southern Greenland, GICs remained in North Greenland probably because the melting was counterbalanced by increased precipitation due to a reduction in Arctic sea‐ice extent and/or increased poleward moisture transport.  相似文献   
2.
The Bloomington meteorite, a 67.8 gram veined, brecciated chondrite, fell during the summer of 1938 in Bloomington, Illinois. Its olivine, orthopyroxene and metal compositions (fo69, en74 and Fe52 Ni48 respectively) and its texture identify it as a brecciated LL6 chondrite of shock facies d. Shock melt glasses occur in Bloomington as sparse melt pockets and veins in clasts and as isolated masses in the black, clast-rich matrix. The vein glasses chemically resemble bulk LL-group chondrites and thus appear to reflect total melting of the host meteorite. The melt pocket and matrix glasses, like those described previously in L-group chondrites, have more varied compositions and are typically enriched in normative plagioclase. All glasses that we analyzed in Bloomington have FeO/MgO and Na/Al ratios similar to those of LL-group chondrites, indicating that melting of this meteorite involved neither a significant change in the oxidation state of iron nor loss of sodium to a vapor phase. Bloomington is a monomict breccia whose components formed in place as a result of a single episode of shock and attendant melting.  相似文献   
3.
Authors' Reply     
Abstract— Jull et al. propose an alternative interpretation of our depth vs. 14C data measured on a peat core from the central Tunguska impact site (Rasmussen et al., 1999). We find that the proposed alternative is untenable.  相似文献   
4.
5.
6.
7.
8.
Black carbon is degraded slowly in the environment and its formation can therefore be an effective sink for atmospheric CO2. This study examined whether charcoal is assimilated by microorganisms or not and estimated the rate of mineralization depending on the degree of thermal alteration of the black carbon. Charcoals were produced at three different temperatures from homogeneously 14C labelled plant material and incubated in soil, and 14C in the evolved CO2 and the microbial biomass was measured. Unlike parallel plant samples, CO2 evolution from the charcoals showed no lag phase, but a period of faster CO2 evolution for the first 5–8 days followed by a period of slow evolution. The mineralization of charcoal appeared to decrease with increasing temperature at which it was produced. This was also the case after the initial period of fast CO2 evolution. With the techniques used, it was not possible to observe any microbial assimilation of charcoal, either because it did not occur, or because the methods used were not sufficiently sensitive. However, the lack of a lag phase in the CO2 evolution from the charcoals is in line with earlier evidence that charcoal is initially oxidized at the surfaces by abiotic processes.  相似文献   
9.
Samarium-neodymium isotopic analyses of unleached and acid-leached mineral fractions from the recently identified olivine-bearing shergottite Northwest Africa 1195 yield a crystallization age of 347 ± 13 Ma and an value of +40.1 ± 0.9. Maskelynite fractions do not lie on the Sm-Nd isochron and appear to contain a martian surface component with low 147Sm/144Nd and 143Nd/144Nd ratios that was added during shock. The Rb-Sr system is disturbed and does not yield an isochron. Terrestrial Sr appears to have affected all of the mineral fractions, although a maximum initial 87Sr/86Sr ratio of 0.7016 is estimated by passing a 347 Ma reference line through the maskelynite fraction that is least affected by contamination. The high initial value and the low initial 87Sr/86Sr ratio, combined with the geologically young crystallization age, indicate that Northwest Africa 1195 is derived from a source region characterized by a long-term incompatible-element depletion.The age and initial Sr and Nd isotopic compositions of Northwest Africa 1195 are very similar to those of Queen Alexandra Range 94201, indicating these samples were derived from source regions with similar Sr-Nd isotopic systematics. These similarities suggest that these two meteorites share a close petrogenetic relationship and might have been erupted from a common volcano. The meteorites Yamato 980459, Dar al Gani 476, Sayh al Uhaymir 005/008, and Dhofar 019 also have relatively old ages between 474 and 575 Ma and trace element and/or isotopic systematics that are indicative of derivation from incompatible-element-depleted sources. This suggests that the oldest group of meteorites is more closely related to one another than they are to the younger meteorites that are derived from less incompatible-element-depleted sources. Closed-system fractional crystallization of this suite of meteorites is modeled with the MELTS algorithm using the bulk composition of Yamato 980459 as a parent. These models reproduce many of the major element and mineralogical variations observed in the suite. In addition, the rare earth element systematics of these meteorites are reproduced by fractional crystallization using the proportions of phases and extents of crystallization that are calculated by MELTS. Other shergottites that demonstrate enrichments in incompatible-elements and have evolved Sr and Nd isotopic systematics have some geochemical systematics that are similar to those observed in the depleted group. Most notably, although they exhibit a very limited range of incompatible trace element and isotopic compositions, they have highly variable major element compositions. This is also consistent with evolution from a common mantle source region by variable amounts of fractional crystallization. If this scenario is correct, it suggests that the combined effects of source composition and fractional crystallization are likely to account for the major element, trace element, and isotopic diversity of all shergottites.  相似文献   
10.
We ran a series of 124 semi-batch reactor experiments to measure the dissolution rate of forsterite in solutions of nitric and oxalic acid solutions over a pH range of 0-7 and total oxalate concentrations between 0 and 0.35 m at 25 °C. We found that the empirical rate law for the dissolution of forsterite in these solutions is
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号