首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
测绘学   1篇
地质学   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
A satellite rainfall retrieval technique is proposed here. The relationships of rain rate with each of cloud water path (CWP) and cloud top temperature (CTT) are investigated. The CWP and CTT are retrieved from SEVIRI data (spinning enhanced visible and infrared imager), and corresponding rain rates are measured by weather radar. The rain rates are compared to corresponding CWP and then to corresponding CTT. The investigation demonstrates an exponential functional dependency between rain rates and CWP for low and moderate rain rates (stratiform rainfall). Conversely, the rain rates are more closely related to CTT for high rain rates (convective rainfall). Therefore, two separate relationships are established for rain rate retrievals. The results show rain rates estimated by the developed scheme are in good correlation with those observed by weather radar.  相似文献   
2.
Analysis of drought areas in northern Algeria using Markov chains   总被引:1,自引:0,他引:1  
Journal of Earth System Science - The present work studies the trends in drought in northern Algeria. This region was marked by a severe, wide-ranging and persistent drought due to its...  相似文献   
3.
The rainfall intensity classification technique using spectral and textural features from MSG/SEVIRI (Meteosat Second Generation/Spinning Enhanced Visible and Infrared) satellite data is proposed in this paper. The study is carried out over north of Algeria. The developed method is based on the artificial neural multilayer perceptron network (MLP). Two MLP algorithms are used: the MLP-S based only on spectral parameters and the MLP-ST that use both spectral and textural features. The MLP model is created with three layers (input, hidden, and output) that consist of 6 output neurons in the output layer that represent the 6 rain intensities classes: very high, moderate to high, moderate, light to moderate, light and no rain and 10 spectral input neurons for the MLP-S and 15 input neurons for MLP-ST, which as ten spectral features that were calculated from MSG thermal infrared brilliance temperature and brilliance temperature difference and as five textural features, and The rainfall intensity areas classified by the proposed technique are validated against ground-based radar data. The rainfall rates used in the training set are derived from Setif radar measurements (Algeria). The results obtained after applying this method show that the introduction of textural parameters as additional information works in improving the classification of different rainfall intensities pixels in the MSG/SEVIRI imagery compared to the techniques based only on spectral information. These results are compared with results obtained with the probability of rainfall intensity (PRI). This comparison revealed a clear outperformance of the MLP algorithms over the PRI algorithms. Best results are provided by the MLP-ST algorithm. The combination of spectral and textural features in the MSG–SEVIRI imagery is important and for the classification of the rainfall intensities to different classes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号