首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   2篇
地球物理   1篇
地质学   12篇
天文学   1篇
  2022年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1978年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
The crystal structure of ilinskite, NaCu5O2(SeO3)2Cl3, a rare copper selenite chloride from volcanic fumaroles of the Great fissure Tolbachik eruption (Kamchatka peninsula, Russia), has been solved by direct methods and refined to R 1?=?0.044 on the basis of 2720 unique observed reflections. The mineral is orthorhombic, Pnma, a?=?17.769(7), b?=?6.448(3), c?=?10.522(4) Å, V?=?1205.6(8) Å3, Z?=?4. The The CuOmCln coordination polyhedra share edges to form tetramers that have 'additional' O1 and O2 atoms as centers. The O1Cu4 and O2Cu4 tetrahedra share common Cu atoms to form [O2Cu5]6+ sheets. The SeO3 groups and Cl atoms are adjacent to the [O2Cu5]6+ sheets to form complex layers parallel to (100). The Na+ cations are located in between the layers. A review of mixed-ligand CuOmCln coordination polyhedra in minerals and inorganic compounds is given. There are in total 26 stereochemically different mixed-ligand Cu-O-Cl coordinations.  相似文献   
3.
The Kepler problem is studied in a space with the Friedmann-Lemaitre-Robertson-Walker metrics of the expanding universe. Cosmic evolution leads to decreasing energy of particles, causing free particles to be captured in bound states, so that the evolution of the universe can be treated as a possible mechanism of the formation of galaxies and clusters of galaxies. The cosmological model is considered where the evolution of the universe plays the role usually inscribed to cold dark matter.  相似文献   
4.
We suggest a more rigorous approach to paleogeodynamic reconstructions of the Sayan-Baikal folded area proceeding from update views of the origin and evolution of island arcs and back-arc basins. Modern island arcs and attendant back-arc basins form mainly by trench rollback caused by progressive subduction of negatively buoyant thick and cold oceanic slabs. Slab stagnation upsets the dynamic equilibrium in the subduction system, which accelerates the rollback. As a result, a continental volcanic arc transforms into an island arc, with oceanic crust production in the back-arc basin behind it. As subduction progresses, the island arc and the back-arc basin may deform, and fold-thrust structures, with the involved back-arc basin and island arc complexes, may accrete to the continent (accretion and collision) without participation of large colliding blocks. When applied to the Sayan–Baikal area, the model predicts that the Riphean and Vendian–Early Paleozoic back-arc basins were more active agents in the regional geologic history than it was thought before. They were deposition areas of sedimentary and volcanosedimentary complexes and then became the scene of collision and accretion events, including folding, metamorphism, and plutonism.  相似文献   
5.
The mechanism of rifting in the Baikal rift zone is a complex process, with stages of crustal fracturing alternating with stages of plastic extension. Data on the form and size of the anomalous mantle region lying below the rift zone is given in the present work. Divergent flow in the upper part of the anomalous mantle is considered the cause of extension of the crust in this region.  相似文献   
6.
7.
Zoned tourmaline(schorl-dravite) in the matrix of hydrothermal explosive breccia and ore veins in gold deposits,Chita region.Eastern Transbaikalia.Russia,are associated with Na- and K-rich porphyry-type subvolcanic intrusives.δ18O values of tourmaline from three gold deposits(Darasun. Talatui,Teremkinskoye) are +8.3‰,+7.6‰,and +6.0‰and calculatedδ18O values of fluids responsible for the tourmalinization are +7.3‰,+7.7‰,and +4.2‰,respectively.These data imply an igneous fluid source,except at the Teremkin deposit where mixing with meteoric water is indicated.Wide ranges of Fe3+/Fetot,and the presence of vacancies characterize the Darasun deposit tourmaline indicating wide ranges of f(O2) and pH of mineralizing fluids.Initial stage tourmalines from the gold deposits of the Darasun ore district are dravite or high mg schorl.Second stage tourmaline is characterized by oscillatory zoning but with Fe generally increasing towards crystal rims indicating decreasing temperature.Third stage tourmaline formed unzoned crystals with xMg(mole fraction of Mg) close to that of the hrst stage tourmaline,due to a close association with pyrite and arsenopyrite.From Fe3+/Fetot values,chemical composition and crystallization temperatures.logf(O2) of mineralizing fluids ranged from ca.—25 to—20. much higher than for the gold-bearing beresite—listvenite association,indicating that tourmalinization was not related to gold mineralization.  相似文献   
8.
It is proposed that there are three types of gold deposits in Eastern and Central Transbaikalia (Trans-Baikal province), namely: (i) high-sulphide intrusion-related deposits with some signs of porphyry deposits, (ii) low-sulphide intrusion-related deposits, and (iii) low-sulphide epithermal Au–Ag deposits. Most of the gold deposits belong to the first two types, and their ages are Middle–Late Jurassic. Deposits of the third type are not numerous, and their age is Early Cretaceous.The majority of the gold mineralization is spatially related to the two branches of the Mongolia–Okhotsk suture, along which Siberia collided, at the Early/Middle Jurassic boundary, with the Mongolia–North China continent and the Onon island-arc terrane located between the two continents. Collision-related thrusting, folding and magmatism lasted until the latest Jurassic, when they gave way to post-collisional rifting that continued until the end of Early Cretaceous.According to their age, relation to magmatism and tectonic framework, the intrusion-related deposits (high- and low-sulphide) were formed in a regional collisional setting. Extensional environments at that time existed only in local areas in the roofs of great magmatic chambers. Low-sulphide epithermal deposits were formed during Early Cretaceous post-collisional rifting.  相似文献   
9.
The Baikal rift zone: the effect of mantle plumes on older structure   总被引:8,自引:0,他引:8  
The main chain of SW–NE-striking Cenozoic half-grabens of the Baikal rift zone (BRZ) follows the frontal parts of Early Paleozoic thrusts, which have northwestern and northern vergency. Most of the large rift half-grabens are bounded by normal faults at the northwestern and northern sides. We suggest that the rift basins were formed as a result of transformation of ancient thrusts into normal listric faults during Cenozoic extension.Seismic velocities in the uppermost mantle beneath the whole rift zone are less than those in the mantle beneath the platform. This suggests thinning of the lithosphere under the rift zone by asthenosphere upwarp. The geometry of this upwarp and the southeastward spread of its material control the crustal extension in the rift zone. This NW–SE extension cannot be blocked by SW–NE compression generated by pressure from the Indian lithospheric block against Central Asia.The geochemical and isotopic data from Late Cenozoic volcanics suggest that the hot material in the asthenospheric upwarp is probably provided by mantle plumes. To distinguish and locate these plumes, we use regional isostatic gravity anomalies, calculated under the assumption that topography is only partially compensated by Moho depth variations. Variations of the lithosphere–asthenosphere discontinuity depth play a significant role in isostatic compensation. We construct three-dimensional gravity models of the plume tails. The results of this analysis of the gravity field are in agreement with the seismic data: the group velocities of long-period Rayleigh waves are reduced in the areas where most of the recognized plumes are located, and azimuthal seismic anisotropy shows that these plumes influence the flow directions in the mantle above their tails.The Baikal rift formation, like the Kenya, Rio Grande, and Rhine continental rifts [Achauer, U., Granet, M., 1997. Complexity of continental rifts as revealed by seismic tomography and gravity modeling. In: Jacob, A.W.B., Delvaux, D., Khan, M.A. (Eds.), Lithosphere Structure, Evolution and Sedimentation in Continental Rifts. Proceedings of the IGCP 400 Meeting, Dublin, March 20–22, 1997. Institute of Advanced Studies, Dublin, pp. 161–171], is controlled by the three following factors: (i) mantle plumes, (ii) older (prerift) linear lithosphere structures favorably positioned relative to the plumes, and (iii) favorable orientation of the far-field forces.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号