首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   4篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
In situ zircon U–Pb and Hf-isotopic data have been determined for mafic microgranular enclaves and host granitoids from the Early Cretaceous Gudaoling batholith in the Liaodong Peninsula, NE China, in order to constrain the sources and petrogenesis of granites. The zircon U–Pb age of the enclaves (120 ± 1 Ma) is identical to that of the host monzogranite (120 ± 1 Ma), establishing that the mafic and felsic magmas were coeval. The Hf isotopic composition of the enclaves [ε Hf(t) = +4.5 to −6.2] is distinct from the host monzogranite [ε Hf(t) = −15.1 to −25.4], indicating that both depleted mantle and crustal sources contributed to their origin. The depleted mantle component was not previously revealed by geochemical and Nd and Sr isotopic studies, showing that zircon Hf isotopic data can be a powerful geochemical tracer with the potential to provide unique petrogenetic information. Some wall-rock contamination is indicated by inherited zircons with considerably older U–Pb ages and low initial Hf isotopic compositions. Hafnium isotopic variations in Early Cretaceous zircons rule-out simple crystal–liquid fractionation or restite unmixing as the major genetic link between enclaves and host rocks. Instead, mixing of mantle-derived mafic magmas with crustal-derived felsic magmas, coupled with assimilation of wall rocks, is compatible with the data. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
2.
Several I- and A-type granite, syenite plutons and spatially associated, giant Fe-Ti-V deposit-bearing mafic-ultramafic layered intrusions occur in the Pan-Xi (Panzhihua-Xichang) area within the inner zone of the Emeishan large igneous province (ELIP). These complexes are interpreted to be related to the Emeishan mantle plume. We present LA-ICP-MS and SIMS zircon U-Pb ages and Hf-Nd isotopic compositions for the gabbros, syenites and granites from these complexes. The dating shows that the age of the felsic intrusive magmatism (256.2 ± 3.0-259.8 ± 1.6 Ma) is indistinguishable from that of the mafic intrusive magmatism (255.4 ± 3.1-259.5 ± 2.7 Ma) and represents the final phase of a continuous magmatic episode that lasted no more than 10 Myr. The upper gabbros in the mafic-ultramafic intrusions are generally more isotopically enriched (lower εNd and εHf) than the middle and lower gabbros, suggesting that the upper gabbros have experienced a higher level of crustal contamination than the lower gabbros. The significantly positive εHf(t) values of the A-type granites and syenites (+4.9 to +10.8) are higher than those of the upper gabbros of the associated mafic intrusion, which shows that they cannot be derived by fractional crystallization of these bodies. They are however identical to those of the mafic enclaves (+7.0 to +11.4) and middle and lower gabbros, implying that they are cogenetic. We suggest that they were generated by fractionation of large-volume, plume-related basaltic magmas that ponded deep in the crust. The deep-seated magma chamber erupted in two stages: the first near a density minimum in the basaltic fractionation trend and the second during the final stage of fractionation when the magma was a low density Fe-poor, Si-rich felsic magma. The basaltic magmas emplaced in the shallow-level magma chambers differentiated to form mafic-ultramafic layered intrusions accompanied by a small amount of crustal assimilation through roof melting. Evolved A-type granites (synenites and syenodiorites) were produced dominantly by crystallization in the deep crustal magma chamber. In contrast, the I-type granites have negative εNd(t) [−6.3 to −7.5] and εHf(t) [−1.3 to −6.7] values, with the Nd model ages () of 1.63−1.67 Ga and Hf model ages () of 1.56−1.58 Ga, suggesting that they were mainly derived from partial melting of Mesoproterozoic crust. In combination with previous studies, this study also shows that plume activity not only gave rise to reworking of ancient crust, but also significant growth of juvenile crust in the center of the ELIP.  相似文献   
3.
The Yanshan Fold and Thrust Belt in eastern China has been intrudedby a series of alkalic igneous rocks, ranging in compositionfrom granite and rhyolite to syenite and trachyte. Laser ablationinductively coupled plasma mass spectrometry U–Pb analysesof zircon from three alkaline suites yield Early Cretaceousages of 130–117 Ma. Three groups of rocks have been identifiedbased on their mineralogical, geochemical and Sr–Nd–Hfisotope characteristics. The alkali granites and rhyolites areferroan and have low Al2O3, MgO, CaO, Sr, Ba and Eu concentrationsand high SiO2, total Fe2O3, K2O, Nb, Ga, Ta, Th and heavy rareearth element abundances and Ga/Al ratios. Geochemical dataand Sr-, Nd- and zircon Hf-isotopic compositions [(87Sr/86Sr)i= 0·7050–0·7164, Nd(t) = –8·4to –13·6 and Hf(t) = –5·7 to –16·8]indicate that they were probably generated by shallow dehydrationmelting of biotite- or hornblende-bearing granitoid crustalsource rocks and then mixed with contemporaneous magma froma mantle and/or lower crustal source. Ferroan syenites havedistinct geochemical features from those of the alkaline granitesand rhyolites, suggesting that they were produced by clinopyroxeneand plagioclase fractionation of melt derived from an enrichedmantle source, mixed with lower and upper crustal-derived magmas.The magnesian syenites and trachytes have Sr-, Nd- and zirconHf-isotopic compositions that are distinct from those of theferroan syenites. They were mainly derived from partial meltingof lower crustal materials, mixed with enriched mantle-derivedalkali basaltic magma. The emplacement of an alkali syenite–granite–rhyolitesuite, coeval with the formation of metamorphic core complexesand pull-apart basins in eastern China, indicates they formedin an extensional setting, possibly as a result of lithosphericthinning. KEY WORDS: alkaline rocks; zircon U–Pb dating; petrogenesis; crustal extension; Yanshan Fold and Thrust Belt; North China Craton  相似文献   
4.
Recent zircon dating identified several late Carboniferous to early Permian hornblende gabbro–diorite–quartz diorite–granodiorite–tonalite–granite plutons in lithological assemblages at the northern margin of the North China Block (NCB) that were previously regarded as Archaean to Palaeoproterozoic. Our geochronological results indicate that emplacement of these plutons was a continuous process during the late Carboniferous to early Permian, from 324 ± 6 to 274 ± 6 Ma, and lasted for at least 50 Ma. In this paper, the early Permian components with compositions from gabbro to granite within the intrusive complex were studied. The early Permian plutons exhibit calc-alkaline or high-K calc-alkaline, metaluminous geochemical features and highly variable SiO2 contents. They have no significant Eu anomaly in their REE patterns, and in primitive-mantle-normalized spidergrams they display depletion in Th, U, Nb, Ta, P and Ti, and enrichment in Ba, K, Pb and Sr. The granitoid bodies within these plutons display I-type and adakitic geochemical signatures. The early Permian rocks exhibit low whole-rock initial 87Sr/86Sr ratios from 0.70520 to 0.70615 and have negative whole-rock ε Nd(t) values ranging from −17.4 to −9.3 and zircon ε Hf(t) values of −23.2 to −10.5. The gabbros exhibit higher ε Nd(t) values from −11.1 to −9.3 and ε Hf(t) values from −16.5 to −10.5, and one granodiorite exhibits an even lower ε Nd(t) value of −17.4 and zircon ε Hf(t) values of −23.2 to −15.1. Geochemical, Sr–Nd and in situ zircon Hf isotopic compositions suggest that the hornblende gabbros were derived from a metasomatized lithospheric mantle, and the diorite and quartz diorite were generated from a gabbroic magma by fractional crystallization, coupled with differential assimilation of ancient lower crustal material. The granodiorite was likely derived from partial melting of ancient lower crust with involvement of some mantle components. Involvement of both lithospheric mantle and ancient lower crust in the generation of the early Permian plutons indicates strong crust–mantle interaction in the northern NCB. Petrological associations as well as geochemical and Sr–Nd–Hf isotopic results show that the early Permian plutons were emplaced along an Andean-type active continental margin during southward subduction of the Palaeo-Asian oceanic plate beneath the NCB. Integration of our results with previously published data for late Carboniferous and late Permian to middle Triassic intrusions suggests that the continental arc on the northern margin of the NCB existed for at least 50 Ma during the late Palaeozoic, and final amalgamation of the Mongolian arc terranes with the northern NCB likely occurred during a period from ~270 to ~250 Ma, i.e, in the late Permian to earliest Triassic.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号