首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   2篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 31 毫秒
1
1.
Crustal or mantle xenoliths are not common in evolved, tholeiitic flood basalts that cover huge areas of the Precambrian shields. Yet, the occasional occurrences provide the most direct and unequivocal evidence on basement composition. Few xenolith occurrences are known from the Deccan Traps, India, and inferences about the Deccan basement have necessarily depended on geophysical studies and geochemistry of Deccan lavas and intrusions. Here, we report two basalt dykes (Rajmane and Talwade dykes) from the central Deccan Traps that are extremely rich in crustal xenoliths of great lithological variety (gneisses, quartzites, granite mylonite, felsic granulite, carbonate rock, tuff). Because the dykes are parallel and only 4 km apart, and only a few kilometres long, the xenoliths provide clear evidence for high small-scale lithological heterogeneity and strong tectonic deformation in the Precambrian Indian crust beneath. Measured 87Sr/86Sr ratios in the xenoliths range from 0.70935 (carbonate) to 0.78479 (granite mylonite). The Rajmane dyke sampled away from any of the xenoliths shows a present-day 87Sr/86Sr ratio of 0.70465 and initial (at 66 Ma) ratio of 0.70445. The dyke is subalkalic and fairly evolved (Mg No. = 44.1) and broadly similar in its Sr-isotopic and elemental composition to some of the lavas of the Mahabaleshwar Formation. The xenoliths are comparable lithologically and geochemically to basement rocks from the Archaean Dharwar craton forming much of southern India. As several lines of evidence suggest, the Dharwar craton may extend at least 350–400 km north under the Deccan lava cover. This is significant for Precambrian crustal evolution of India besides continental reconstructions.  相似文献   
2.
We collected thermal infrared video of two explosive eruptions at Stromboli in June 2008 and manually traced the trajectories of 95 particles launched during two eruptions. We found that 10–15?% of the analyzed trajectories deviated from predicted curves due to collisions, causing one particle to travel horizontally more than twice as far as expected. Furthermore, we observed an oscillatory cooling behavior for the airborne pyroclasts, with a median period of 0.46?s. Measured cooling was typically much faster than model-predicted cooling with discrepancies of up to 40?% between measured cooling and theoretical modeling. We interpret the measured cooling curves as resulting from the spinning and twisting and tearing of particles during travel: the periodic re-exposing of the hotter core of the pyroclasts to the atmosphere may cause the observed oscillations, and the spinning may accelerate cooling by enhancing convective heat transfer. Current volcanic trajectory and cooling models do not account for projectile collisions, spinning, or tearing and can thus severely underestimate the maximum landing distance and cooling rates of large pyroclasts.  相似文献   
3.
Many tholeiitic dyke-sill intrusions of the Late Cretaceous Deccan Traps continental flood basalt province are exposed in the Satpura Gondwana Basin around Pachmarhi, central India. We present field, petrographic, major and trace element, and Sr–Nd–Pb isotope data on these intrusions and identify individual dykes and sills that chemically closely match several stratigraphically defined formations in the southwestern Deccan (Western Ghats). Some of these formations have also been identified more recently in the northern and northeastern Deccan. However, the Pachmarhi intrusions are significantly more evolved (lower Mg numbers and higher TiO2 contents) than many Deccan basalts, with isotopic signatures generally different from those of the chemically similar lava formations, indicating that most are not feeders to previously characterized flows. They appear to be products of mixing between Deccan basalt magmas and partial melts of Precambrian Indian amphibolites, as proposed previously for several Deccan basalt lavas of the lower Western Ghats stratigraphy. Broad chemical and isotopic similarities of several Pachmarhi intrusions to the northern and northeastern Deccan lavas indicate petrogenetic relationships. Distances these lava flows would have had to cover, if they originated in the Pachmarhi area, range from 150 to 350 km. The Pachmarhi data enlarge the hitherto known chemical and isotopic range of the Deccan flood basalt magmas. This study highlights the problems and ambiguities in dyke-sill-flow correlations even with extensive geochemical fingerprinting.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号