首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
地球物理   10篇
地质学   11篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2009年   3篇
  2005年   1篇
  2003年   2篇
  2002年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有21条查询结果,搜索用时 375 毫秒
1.
Ocean Drilling Program (ODP) Hole 504B near the Costa Rica Rift is the deepest hole drilled in the ocean crust, penetrating a volcanic section, a transition zone and a sheeted dike complex. The distribution of Li and its isotopes through this 1.8-km section of oceanic crust reflects the varying conditions of seawater alteration with depth. The upper volcanic rocks, altered at low temperatures, are enriched in Li (5.6-27.3 ppm) and have heavier isotopic compositions (δ7Li=6.6-20.8‰) relative to fresh mid-ocean ridge basalt (MORB) due to uptake of seawater Li into alteration clays. The Li content and isotopic compositions of the deeper volcanic rocks are similar to MORB, reflecting restricted seawater circulation in this section. The transition zone is a region of mixing of seawater with upwelling hydrothermal fluids and sulfide mineralization. Li enrichment in this zone is accompanied by relatively light isotopic compositions (−0.8-2.1‰) which signify influence of basalt-derived Li during mineralization and alteration. Li decreases with depth to 0.6 ppm in the sheeted dike complex as a result of increasing hydrothermal extraction in the high-temperature reaction zone. Rocks in the dike complex have variable isotopic values that range from −1.7 to 7.9‰, depending on the extent of hydrothermal recrystallization and off-axis low-temperature alteration. Hydrothermally altered rocks are isotopically light because 6Li is preferentially retained in greenschist and amphibolite facies minerals. The δ7Li values of the highly altered rocks of the dike complex are complementary to those of high-temperature mid-ocean ridge vent fluids and compatible to equilibrium control by the alteration mineral assemblage. The inventory of Li in basement rocks permits a reevaluation of the role of oceanic crust in the budget of Li in the ocean. On balance, the upper 1.8 km of oceanic crusts remains a sink for oceanic Li. The observations at 504B and an estimated flux from the underlying 0.5 km of gabbro suggest that the global hydrothermal flux is at most 8×109 mol/yr, compatible with geophysical thermal models. This work defines the distribution of Li and its isotopes in the upper ocean crust and provides a basis to interpret the contribution of subducted lithosphere to arc magmas and cycling of crustal material in the deep mantle.  相似文献   
2.
Calcium chloride brines are, as a rule, relatively rich in strontium, but the enrichment is usually limited and is found to be related to the concentration of calcium. The limiting mechanisms were evaluated as a model which comprises simple interactions between minerals and solutions. Based on the known ranges of strontium concentration in minerals, mineral solubilities and partition coefficients of strontium (both poorly known in certain cases), six fields of SrCa molar ratios were defined in terms of participating minerals and processes: (a) 0.38?1.56 × 10? 3 by dolomitization of calcite; (b) 1.5?2.2 × 10? 2 due to dolomitization of aragonite; (c) 0.4?1.4 × 10? 2 as a result of solution-reprecipitation of calcite; (d)0.12?0.20 through transformation of aragonite to calcite; (e)0.10?0.60 through equilibrium of the pair calcite-strontianite; and (f)0.01?0.08 by equilibrium with gypsum and celestite.The model was applied to the analysis of two groups of brines from southern Israel which are originated in the coastal plain (group C) and in the rift valley (group R). The low MgCa ratios of both water groups point to dolomitization as the main subsurface modifying process. SrCa ratios of brines belonging to group C are consistent with dolomitization of aragonitic surface sediments at the beginning of their evolution. Brines of group R bear evidence to a similar pathway at the beginning of their evolution, but most of them were further affected by interaction with limestone.  相似文献   
3.
In this paper we describe the stratigraphy and sediments deposited in Lake Samra that occupied the Dead Sea basin between ∼ 135 and 75 ka. This information is combined with U/Th dating of primary aragonites in order to estimate a relative lake-level curve that serves as a regional paleohydrological monitor. The lake stood at an elevation of ∼ 340 m below mean sea level (MSL) during most of the last interglacial. This level is relatively higher than the average Holocene Dead Sea (∼ 400 ± 30 m below MSL). At ∼ 120 and ∼ 85 ka, Lake Samra rose to ∼ 320 m below MSL while it dropped to levels lower than ∼ 380 m below MSL at ∼ 135 and ∼ 75 ka, reflecting arid conditions in the drainage area. Lowstands are correlated with warm intervals in the Northern Hemisphere, while minor lake rises are probably related to cold episodes during MIS 5b and MIS 5d. Similar climate relationships are documented for the last glacial highstand Lake Lisan and the lowstand Holocene Dead Sea. Yet, the dominance of detrital calcites and precipitation of travertines in the Dead Sea basin during the last interglacial interval suggest intense pluvial conditions and possible contribution of southern sources of wetness to the region.  相似文献   
4.
Spatial variability in lithobiont‐induced weathering patterns on desert rocks is aspect‐dependent. While differences between the northern and southern aspects have been extensively studied, little is known concerning the differences between east‐facing (EF) and west‐facing (WF) aspects in deserts, including the Negev Desert. Whereas cobbles on both slopes are inhabited by endolithic lichens, epilithic lichens, which render the bedrock a smooth appearance, and free‐living cyanobacteria, which give the bedrock a rugged microrelief, predominate on WF and EF bedrock, respectively. Following previous research that regarded dew as the principal factor that determines lithobiont distribution, measurements of radiation, temperature, wind and dew were carried out during 2008–2009 in the Negev Desert. The data indicated that albeit slightly higher midday surface temperatures that characterize WF surfaces (cobbles and bedrock), nocturnal temperatures on these surfaces were significantly lower, therefore facilitating higher dew condensation. High amounts of dew result from the relatively rapid drop in temperatures (14:00–20:00) due to the afternoon northwesterly sea‐breeze wind (with a cooling rate of the WF bedrock being 52.9% higher than on EF bedrock, 2.6 °C h?1 in comparison to only 1.7 °C h?1), and facilitate the growth of high‐chlorophyll dew‐fed (and rain‐fed) epilithic lichens, which may act as bio‐protectors on WF bedrock. Lack of condensation on EF bedrock results in turn in the growth of rain‐fed free‐living cyanobacteria, responsible for high rock dissolution and subsequently for a rugged microrelief. By affecting the nocturnal bedrock temperatures, wind acts as a cooling agent, impacting in turn the amount of dew, and subsequently lithobiont composition and weathering patterns in the Negev Desert. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
Radiogenic isotope variations in lavas from the Cook–Austral volcanic chain have delineated three distinct mantle sources: a HIMU component, a depleted component (DM), and an enriched component (EM). To better constrain the mantle sources for South Pacific hot spot volcanism, we determined lithium isotopic compositions of lavas from Raivavae, Rapa, Mangaia and Tubuai of the volcanic chain. The study includes whole rock and mineral analyses. In general, δ7Li of most olivines resemble bulk rock composition whereas clinopyroxenes are variably lighter. This implies that clinopyroxene is more susceptible to diffusion-induced fractionation, in agreement with previous studies. Olivine δ7Li values span a narrower range than whole rock values, and do not extend to the very heavy compositions previously reported in HIMU bulk lavas. This discrepancy likely reflects alteration of bulk lavas, and suggests that Li-isotope analyses of bulk lavas should be interpreted with caution. Olivines from HIMU lavas have heavy δ7Li values (up to 6.2‰), and extend beyond the range reported for fresh MORB. Correlations between Li-isotopes and radiogenic isotopes suggest that the heavy δ7Li values in HIMU olivines are a source characteristic and not the result of post-magmatic alteration. Although the Li-isotope composition of recycled, dehydrated oceanic crust is currently under debate, our results suggest that HIMU lavas derive from a source containing recycled dehydrated oceanic crust, and that the “heavy” Li-isotope signature of altered oceanic crust is partially preserved during passage through the subduction factory.  相似文献   
6.
7.
Oceanic87Sr/86Sr ratios during Jurassic to Pleistocene have been determined by analysing fresh waters from marine limestone and dolomite aquifers. The results are in good agreement with published data from well preserved fossil material. The87Sr/86Sr ratios obtained are 0.7070 for Lower to Middle Jurassic, 0.7075 for Late Cretaceous, 0.7080 for Lower to Middle Eocene and 0.7087 for Pleistocene aquifer waters. The value of87Sr/86Sr for the Eimer and Amend isotopic standard was 0.7082.  相似文献   
8.
The behavior of U during the diagenetic formation of marine phosphorite has been modelled. The model examines a dissolution-reprecipitation replacement of skeletal hydroxyapatite, calcium carbonate and earlier generated francolite by francolite. The amount of organic matter consumed relative to the mass of francolite formed, the replacement reaction progress, and the concentration of U in the replaced phases are the important parameters which dictate the concentration of U in the phosphate rock.A partition coefficient between apatite and interstitial solution was calculated, and is λUF = 0.57.Natural phosphorites have been examined and are discussed in the light of the proposed model. The U mass-balance in a Recent phosphorite is in good accord with theoretical predictions. Differences in U concentrations between sea-floor phosphorites are explained either by the (original) variation in the organic matter distribution in the corresponding sediments and/or by mineralogical differences (CaCO3vs. hydroxyapatite) therein.Senonian phosphate rocks which were formed via the francolite → francolite transformation, demonstrate that during that process the organic matter content in the sediment was approximately 50%.The model supports the idea that phosphorite rock formation is a multistage process.  相似文献   
9.
The pronounced desorption of Ba and226Ra from river-borne sediments in the Hudson estuary can be explained quantitatively by the drastic decrease in the distribution coefficients of both elements from a fresh to a salty water medium. The desorption in estuaries can augment, at least, the total global river fluxes of dissolved Ba and226Ra by one and nine times, respectively. The desorptive flux of226Ra from estuaries accounts for 17–43% of the total226Ra flux from coastal sediments. Two mass balance models depicting mixing and adsorption-desorption processes in estuaries are discussed.  相似文献   
10.
Twenty-four brine samples from the Heletz-Kokhav oilfield, Israel, have been analyzed for chemical composition and Li isotope ratios. The chemical composition of the brines, together with geological evidence, suggests derivation from (Messinian) seawater by evaporation that proceeded well into the gypsum stability field but failed to reach the stage of halite crystallization. The present salinity of the samples (18-47 g Cl/L) was achieved by dilution of the original evaporitic brine by local fresh waters. Like brines from other sedimentary basins, the Li/Cl ratios in the Heletz-Kokhav samples show a prominent Li enrichment (five-fold to eight-fold) relative to modern seawater. The isotopic ratios of Li, expressed in the δ 6Li notation, vary from −26.3 to −17.9‰, all values being significantly higher than that of modern seawater (−32‰) irrespective of their corresponding Li concentration (1.0-2.3 mg/L). The isotopic composition of Li and the Li/Cl ratio in the oilfield brines were acquired in two stages: (a) The original evaporated seawater gained isotopically light Li during the diagenetic interaction between the interstitial Messinian brine and the basin sediments. A parent brine with an elevated Li/Cl ratio was formed. The brine was later diluted in the oilfields. (b) The δ 6Li values of the final brines were determined during epigenetic interaction with the Heletz-Kokhav aquifer rocks. At the same time, the Li/Cl ratio inherited from stage (a) remained largely unchanged. This work represents the first use of lithium isotopic composition to elucidate the origin and evolution of formation waters in sedimentary basins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号