首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   5篇
测绘学   8篇
大气科学   20篇
地球物理   31篇
地质学   57篇
海洋学   12篇
天文学   18篇
综合类   3篇
自然地理   24篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   13篇
  2012年   5篇
  2011年   9篇
  2010年   6篇
  2009年   12篇
  2008年   6篇
  2007年   9篇
  2006年   8篇
  2005年   5篇
  2004年   11篇
  2003年   6篇
  2002年   9篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1991年   2篇
  1990年   2篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1975年   2篇
  1974年   3篇
  1972年   1篇
  1955年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
1.
2.
The development of the strongest El Niño event on record in the equatorial Pacific in 1997–1998 and the rapid transition to strong La Niña conditions in 1998–1999 had a large impact on the physical and biological environment of the West Coast. We investigate the evolution of the physical structure and circulation dynamics of the southern California Current System (CCS) during this period based on hydrographic data collected on 25 cruises over a 45-month period (February 1996–October 1999). The El Niño period was characterized by a significant increase in dynamic height, extreme water mass characteristics, a strengthening and broadening of the poleward nearshore flow, and a temporary reversal of net alongshore transport. By early 1999, conditions in the CCS had reversed. The data suggest that remotely driven forcing (propagating oceanic waves) contributed to the anomalies observed during the El Niño period, while the cool-water conditions of 1999 were most likely a result of anomalous local atmospheric forcing.  相似文献   
3.
Records of stable carbon isotopes (δ13C) are presented from cores collected from four San Francisco Bay marshes and used as a proxy for changes in estuary salinity. The δ13C value of organic marsh sediments are a reflection of the relative proportion of C3 vs. C4 plants occupying the surface, and can thus be used as a proxy for vegetation change on the marsh surface. The four marshes included in this study are located along a natural salinity gradient that exists in the San Francisco Bay, and records of vegetation change at all four sites can be used to infer changes in overall estuary paleosalinity. The δ13C values complement pollen data from the same marsh sites producing a paleoclimate record for the late Holocene period in the San Francisco Bay estuary. The data indicate that there have been periods of higher-than-average salinity in the Bay estuary (reduced fresh water inflow), including 1600-1300 cal yr B.P., 1000-800 cal yr B.P., 300-200 cal yr B.P., and ca. A.D. 1950 to the present. Periods of lower-than-average salinity (increased fresh water inflow) occurred before 2000 cal yr B.P., from 1300 to 1200 cal yr B.P. and ca. 150 cal yr B.P. to A.D. 1950. A comparison of the timing of these events with records from the California coast, watershed, and beyond the larger drainage of the Bay reveals that the paleosalinity variations reflected regional precipitation.  相似文献   
4.
5.
This study provides new insights into the relationship between radiation-dose-dependent structural damage due to natural U and Th impurities and the anisotropic mechanical properties (Poisson’s ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. in Am Mineral 76:1510–1532, 1991) and synthetic samples, covering a dose range of zero up to 6.8 × 1018 α-decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by Özkan (J Appl Phys 47:4772–4779, 1976), revealed a general radiation-induced decrease in stiffness (~54 %) and hardness (~48 %) and an increase in the Poisson’s ratio (~54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Ríos et al. in J Phys Condens Matter 12:2401–2412, 2000a; Farnan and Salje in J Appl Phys 89:2084–2090, 2001; Zhang and Salje in J Phys Condens Matter 13:3057–3071, 2001). The excellent agreement, revealed by the different methods, indicates a large influence of structural and even local phenomena on the macroscopic mechanical properties. Therefore, this study indicates the importance of acquiring better knowledge about the mechanical long-term stability of radiation-damaged materials.  相似文献   
6.
7.
In marine strata from Sinian to Middle Triassic in South China, there develop four sets of regional and six sets of local source rocks, and ten sets of reservoir rocks. The occurrence of four main formation periods in association with five main reconstruction periods, results in a secondary origin for the most marine gas pools in South China. To improve the understanding of marine gas pools in South China with severely deformed geological background, the dominant control factors are discussed in this paper. The fluid sources, including the gas cracked from crude oil, the gas dissolved in water, the gas of inorganic origin, hydrocarbons generated during the second phase, and the mixed pool fluid source, were the most significant control factors of the types and the development stage of pools. The period of the pool formation and the reconstruction controlled the pool evolution and the distribution on a regional scale. Owing to the multiple periods of the pool formation and the reconstruction, the distribution of marine gas pools was complex both in space and in time, and the gas in the pools is heterogeneous. Pool elements, such as preservation conditions, traps and migration paths, and reservoir rocks and facies, also served as important control factors to marine gas pools in South China. Especially, the preservation conditions played a key role in maintaining marine oil and gas accumulations on a regional or local scale. According to several dominant control factors of a pool, the pool-controlling model can be constructed. As an example, the pool-controlling model of Sinian gas pool in Weiyuan gas field in Sichuan basin was summed up.  相似文献   
8.
Although organic compounds typically constitute a substantial fraction of the fine particulate matter (PM) in the atmosphere, their molecular composition remains poorly characterized. This is largely because atmospheric particles contain a myriad of diverse organic compounds, not all of which extract in a single solvent or elute through a gas chromatograph; therefore, a substantial portion typically remains unanalyzed. Most often the chemical analysis is performed on a fraction that extracts in organic solvents such as benzene, ether or hexane; consequently, information on the molecular composition of the water-soluble fraction is particularly sparse and incomplete.This paper investigates theoretically the characteristics of the water-soluble fraction by splicing together various strands of information from the literature. We identify specific compounds that are likely to contribute to the water-soluble fraction by juxtaposing observations regarding the extraction characteristics and the molecular composition of atmospheric particulate organics with compound-specific solubility and condensibility for a wide variety of organics. The results show that water-soluble organics, which constitute a substantial fraction of the total organic mass, include C2 to C7 multifunctional compounds (e.g., diacids, polyols, amino acids). The importance of diacids is already recognized; our results provide an impetus for new experiments to establish the atmospheric concentrations and sources of polyols, amino acids and other oxygenated multifunctional compounds.  相似文献   
9.
ABSTRACT

This study experiments with reservoir representation schemes to improve the ability to model active water management in the National Water Model (NWM). For this purpose, we developed an integrated water management model, NWM-ResSim, by coupling the NWM with HEC-ResSim, and two reservoir representation schemes are tested: simulation of reservoir operations and retrieval of scheduled operations. The experiments focus on a pilot reservoir domain in the Russian River basin – Lake Mendocino, California – and its contributing watershed. The evaluation results suggest that the NWM-ResSim improves the simulation performance of reservoir outflow from this managed reservoir over the NWM default level pool routing scheme. The degree of this improvement depends on the suitability of the operation guidance; the reservoir operations simulation scheme could have acceptable errors for the purposes of water resources management, but not for flood operations. Results of the retrieval scheme of scheduled operations demonstrated better performance for sub-daily flood operations.  相似文献   
10.
On the basis of ultrastructural, biochemical and genetic studies, bacteria and blue green algae (Kingdom Monera, all prokaryotes) differ unambiguously from the eukaryotic organisms (Fungi, plants sensu stricto) and protists or protoctists, (Copeland, 1956). The gap between eukaryotes and prokaryotes is recognized as the most profound evolutionary discontinuity in the living world. This gap is reflected in the fossil record. Fossil remains of Archaean and Proterozoic Aeons primarily consist of prokaryotes and the Phanerozoic is overwhelmingly characterized by fossils of the megascopic eukaryotic groups, both metazoa and metaphyta. Based on the morphological interpretation of microscopic objects structurally preserved in Precambrian cherts, the time of appearance of remains of eukaryotic organisms in the fossil record has been claimed to be as early as 2.7 · 109 years ago, (Ka?mierczak, 1976). Others suggest chronologies varying between 1.7 to 1.3 · 109 (Schopf et al., 1973) or a time approaching 1.3 · 109 years (Cloud, 1974).There is general agreement that many of the Ediacaran faunas, which have been dated at about 680 m.y. are fossils of megascopic soft-bodied invertebrate animals. Since all invertebrates are eukaryotic, the ca. 680 m.y. date for deposition of these animal assemblages may represent the earliest appearance of eukaryotic organisms. But the question remains as to whether there is definitive evidence for eukaryotic cells before this “benchmark” of the late Precambrian.An excellent discussion of this particular problem as especially relating to acritarchs extending from rocks of Upper Riphean through Vendian and into the basal Cambrian is presented in recent studies by Vidal (1974, 1976) in Late Precambrian microfossils from the Visingsö rocks of southern Sweden.Previous work on the laboratory silicification of wood and algal mat communities (Leo and Barghoorn, 1976) suggested that further analysis of “artificial fossils” might be of aid in the interpretation of fossil morphology toward the ultimate solution of this problem. Thus the procedure developed by one of us (ESB) for laboratory wood silicification was adapted to various smaller objects.By successive immersions of wet cellular aggregates, colonies of various organisms and abiotic organic microspheres in tetraethyl orthosilicate, silicified cells and structures are produced which bear an interesting resemblance to ancient chert-embedded microfossils. Our observation of these microorganisms and proteinoid microspheres silicified in the laboratory as well as of degrading microorganisms, both eukaryotic and prokaryotic, have led us to conclude that many, if not all, of the criteria for assessing fossil eukaryotic microorganisms are subject to serious criticism in interpretation. We studied a large variety of prokaryotic algae, some eukaryotic algae, fungi, protozoa, and abiotic organic microspheres stable at essentially neutral pH. In some cases, degradation and/or silicification systematically altered both size and appearances of microorganisms. By the use of monoalgal cultures of blue-green algae, features resembling nuclei, chloroplasts, tetrads, pyrenoids, and large cell size may be simulated. In many cases individual members of these cultures show so much variation that they may be mistaken as belonging to more than one species. The size ranges for silicified prokaryotic and eukaryotic algae overlap. Several prokaryotes routinely yielded spherical or filamentous structures that resembled large cells. Because of genuine large sizes (e.g., Prochloron), shrinkage, systematic alteration or congregation of unicells to form other structures we find sizes to be of very limited use in determining whether an organism of simple morphology was prokaryotic or eukaryotic. Although some “prebiotic proteinoid microspheres” (of Fox and Harada, 1960) are impossible to silicify with our laboratory methods, those stable at neutral pH (Hsu and Fox, 1976) formed spherical objects that morphologically resemble silicified algae or fungal spores. Many had internal structure. We conclude that even careful morphometric studies of fossil microorganisms are subject to many sources of misinterpretation. Even though it is a logical deduction that eukaryotic microorganisms evolved before Ediacaran time there is no compelling evidence for fossil eukaryotes prior to the late Precambrian metazoans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号