首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2010年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Heikkilä, M. & Seppä, H. 2010: Holocene climate dynamics in Latvia, eastern Baltic region: a pollen‐based summer temperature reconstruction and regional comparison. Boreas, Vol. 39, pp. 705–719. 10.1111/j.1502‐3885.2010.00164.x. ISSN 0300‐9483. A pollen‐based summer temperature (Tsummer) reconstruction reveals the Holocene climate history in southeastern Latvia and contributes to the limited understanding of past climate behaviour in the eastern sector of northern Europe. Notably, steady climate warming of the early Holocene was interrupted c. 8350–8150 cal. yr BP by the well‐known 8.2 ka cold event, recorded as a decrease of 0.9 to 1.8 °C in Tsummer. During the Holocene Thermal Maximum, c. 8000–4000 cal. yr BP, the reconstructed summer temperature was ~2.5–3.5 °C higher than the modern reconstructed value, and subsequently declined towards present‐day values. Comparison of the current reconstruction with other pollen‐based reconstructions in northern Europe shows that the 8.2 ka event is particularly clearly reflected in the Baltic region, possibly as a result of distinct climatic and ecological gradients and the sensitivity of the vegetation growth pattern to seasonal temperature change. The new reconstruction also reveals that the Holocene Thermal Maximum was warmer in Latvia than in central Europe and Fennoscandia. In fact, a gradient of increasing positive temperature anomalies is detected from northernmost Fennoscandia towards the south and from the Atlantic coast in Norway towards the continental East European Plain. The dynamics of the temperate broadleaved tree species Tilia and Quercus in Latvia and adjacent northern Europe during the mid‐Holocene give complementary information on the multifaceted climatic and environmental changes in the region.  相似文献   
2.
Facies, geometry and key internal stratigraphic surfaces from eight Cretaceous and Eocene clastic shoreline tongues have been documented. The regressive parts of all the studied tongues represent storm‐wave influenced strandplains, deltas or fan‐deltas, and the regressive shoreline trajectories varied from descending to ascending. The transgressive parts of the tongues are dominated by either estuarine or coastal‐plain deposits. The distance from the coeval, up‐dip non‐marine deposits to the basinward pinchout of amalgamated shoreface sandstones, measured along depositional dip, is here termed the sand pinchout distance. The study shows that the angle of regressive‐to‐transgressive turnaround (defined by the angle between the regressive and subsequent transgressive shoreline trajectories) and the process regime during turnaround largely control the sand‐pinchout distance. The amount of transgressive erosion can also partly control the pinchout distance, but this parameter was comparable for the different examples presented here. If the type of depositional system at turnaround and the depth of transgressive erosion are constant, small angles of turnaround are associated with large pinchout distances, whereas larger angles of turnaround result in smaller pinchout distances. The model developed allows sand‐pinchout distance to be predicted, using data for the landward parts of shoreline tongues. The dataset also shows that steeply rising (aggrading) shoreline trajectories tend to produce more heterolithic sandstone tongues than those formed by lower‐angle trajectories.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号