首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
大气科学   1篇
地质学   3篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 125 毫秒
1
1.
This high-resolution, multiproxy, palaeoenvironmental study of the Słowińskie Błota raised bog in N Poland, 10 km from the Baltic Sea, covering the last 1200 years reveals different aspects of environmental change in a range of spatial scales from local to regional. Testate amoebae allowed quantitative reconstruction of the local water table using a transfer function based on a training set from N and W Poland. Special attention is paid to the testate amoeba Arcella discoides , which responds to rapid water-table fluctuations more than to average surface wetness. Macrofossils supported by local pollen tracked the local vegetation dynamics caused by local human impact and disturbance, including nutrients. Regional pollen showed human-induced landscape change outside the bog. Tree rings of Pinus sylvestris reflected the history of tree establishment and desiccation of the bog. Strong correlations between DCA axes 1 of regional pollen, of macrofossils and of testate amoebae, and a testate-amoebae-based water-table reconstruction that excludes A. discoides , indicate that changes on all spatial scales are linked, which is explained by a strong hydrologic connection between bog and surroundings. The combination of proxies shows that groundwater levels were modified by both human impact and climate change.  相似文献   
2.
Payne, R. J., Lamentowicz, M. & Mitchell, E. A. D. 2010: The perils of taxonomic inconsistency in quantitative palaeoecology: experiments with testate amoeba data. Boreas, 10.1111/j.1502‐3885.2010.00174.x. ISSN 0300‐9483. A fundamental requirement of quantitative palaeoecology is consistent taxonomy between a modern training set and palaeoecological data. In this study we assess the possible consequences of violation of this requirement by simulating taxonomic errors in testate amoeba data. Combinations of easily confused taxa were selected, and data manipulated to reflect confusion of these taxa; transfer functions based on unmodified data were then applied to these modified data sets. Initially these experiments were carried out one error at a time using four modern training sets; subsequently, multiple errors were separately simulated both in four modern training sets and in four palaeoecological data sets. Some plausible taxonomic confusions caused major biases in reconstructed values. In the case of two palaeoecological data sets, a single consistent taxonomic error was capable of changing the pattern of environmental reconstruction beyond all recognition, totally removing any real palaeoenvironmental signal. The issue of taxonomic consistency is one that many researchers would rather ignore; our results show that the consequences of this may ultimately be severe.  相似文献   
3.
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号