首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
大气科学   1篇
地球物理   1篇
地质学   4篇
  2013年   1篇
  2012年   1篇
  2008年   1篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Deep towed 30 kHz sidescan sonar data from the Saharan Debris Flow deposit, west of the Canary Islands, show spectacular backscatter patterns which are interpreted in terms of flow banding, longitudinal shears, lateral ridges (levees) and transported blocks. Identification of these features is based on high resolution seismic profiles and on a comparison with similar structures seen in better known environments including other marine debris flows and slides, subaerial sediment failures (particularly rock fall avalanches), glaciers and lava flows. Flow banding in the debris flow, picked out by bands of differing backscatter intensity, is on a scale of tens to hundreds of metres. It is considered to result from flow streaming of clasts, with variation in clast size between bands. This primary fabric is cut by a series of distinct flow-parallel longitudinal shears. Broad, high backscatter longitudinal bands along the edge of and within the debris flow are interpreted as lateral ridges associated with multiple flow pulses; the high backscatter possibly reflects either a concentration of coarse grained material or chaotic sediments deposited from a turbulent flow. Coherent, low backscatter patches are interpreted as rafted blocks, although streamlined haloes of high backscatter material around some blocks indicates differential movement between block and flow, possibly during the waning stages of the flow. A non-turbulent debris flow model is preferred, in which a raft of more or less coherent material is carried along by a base undergoing laminar flow. Speculatively, the lack of turbulent mixing preserves original sedimentological heterogeneity from the debris flow source area, possibly in the form of clast size distributions. These heterogeneous sediments are drawn out into a flow-parallel banding which is imaged as the flow-parallel backscatter intensity banding. The upper raft of material responds to cross-flow velocity differences, and perhaps to variations in the timing of flow movement, primarily by longitudinal shearing. More complex deformation of the flow banding occurs at the flow margins and around obstacles in the flow, where lateral velocity shear would be expected to be highest.  相似文献   
2.
The Darwin Mounds are small (up to 70 m in diameter), discrete cold‐water coral banks found at c. 950 m water depth in the northern Rockall Trough, north‐east Atlantic. Formerly described in terms of their genesis, the Darwin Mounds are re‐evaluated here in terms of mound growth processes based on 100 and 410 kHz side‐scan sonar data. The side‐scan sonar coverage is divided into a series of acoustic facies representing increasing current speed and sediment transport/erosion from south to north: pockmark facies, ‘mounds within depressions’ facies, Darwin Mound facies, stippled seabed facies and sand wave facies. Mound morphometric changes are quantified and show a south‐to‐north divergence from an inherited morphology, reflecting the outline of coral‐colonized fluid escape structures, to developed, downstream elongated, elevated mound forms. It is postulated that increasing current speeds and bedload sand transport favour mound growth and development by a process of enhanced sand sedimentation within mounds due to current deceleration by frictional drag around coral colonies. Comparisons are made with similar growth processes attributed to comparably sized cold‐water coral mounds in the Porcupine Seabight, offshore Ireland.  相似文献   
3.
Abstract

The runoffs at four Ivory Coast hydrometric stations (monitoring flows from an area covering between 5930 and 66500 km2) were analysed with a set of statistical methods for the detection of breaks in the time series. The variables studied were the annual mean discharge and some characteristic discharges. From a quantitative standpoint, the existence of a clear break in the series of annual mean discharges at the beginning of the decade from 1970, the date from which the runoffs decrease significantly, was noted. A more qualitative study of the results showed that low flows were more affected than high flows by this variability of the regime. This fluctuation appears to be in accord with the drought phenomena observed during the same period in the Sahel, to the north of Ivory Coast.  相似文献   
4.
Subaqueous sediment density flows: Depositional processes and deposit types   总被引:7,自引:0,他引:7  
Submarine sediment density flows are one of the most important processes for moving sediment across our planet, yet they are extremely difficult to monitor directly. The speed of long run‐out submarine density flows has been measured directly in just five locations worldwide and their sediment concentration has never been measured directly. The only record of most density flows is their sediment deposit. This article summarizes the processes by which density flows deposit sediment and proposes a new single classification for the resulting types of deposit. Colloidal properties of fine cohesive mud ensure that mud deposition is complex, and large volumes of mud can sometimes pond or drain‐back for long distances into basinal lows. Deposition of ungraded mud (TE‐3) most probably finally results from en masse consolidation in relatively thin and dense flows, although initial size sorting of mud indicates earlier stages of dilute and expanded flow. Graded mud (TE‐2) and finely laminated mud (TE‐1) most probably result from floc settling at lower mud concentrations. Grain‐size breaks beneath mud intervals are commonplace, and record bypass of intermediate grain sizes due to colloidal mud behaviour. Planar‐laminated (TD) and ripple cross‐laminated (TC) non‐cohesive silt or fine sand is deposited by dilute flow, and the external deposit shape is consistent with previous models of spatial decelerating (dissipative) dilute flow. A grain‐size break beneath the ripple cross‐laminated (TC) interval is common, and records a period of sediment reworking (sometimes into dunes) or bypass. Finely planar‐laminated sand can be deposited by low‐amplitude bed waves in dilute flow (TB‐1), but it is most likely to be deposited mainly by high‐concentration near‐bed layers beneath high‐density flows (TB‐2). More widely spaced planar lamination (TB‐3) occurs beneath massive clean sand (TA), and is also formed by high‐density turbidity currents. High‐density turbidite deposits (TA, TB‐2 and TB‐3) have a tabular shape consistent with hindered settling, and are typically overlain by a more extensive drape of low‐density turbidite (TD and TC,). This core and drape shape suggests that events sometimes comprise two distinct flow components. Massive clean sand is less commonly deposited en masse by liquefied debris flow (DCS), in which case the clean sand is ungraded or has a patchy grain‐size texture. Clean‐sand debrites can extend for several tens of kilometres before pinching out abruptly. Up‐current transitions suggest that clean‐sand debris flows sometimes form via transformation from high‐density turbidity currents. Cohesive debris flows can deposit three types of ungraded muddy sand that may contain clasts. Thick cohesive debrites tend to occur in more proximal settings and extend from an initial slope failure. Thinner and highly mobile low‐strength cohesive debris flows produce extensive deposits restricted to distal areas. These low‐strength debris flows may contain clasts and travel long distances (DM‐2), or result from more local flow transformation due to turbulence damping by cohesive mud (DM‐1). Mapping of individual flow deposits (beds) emphasizes how a single event can contain several flow types, with transformations between flow types. Flow transformation may be from dilute to dense flow, as well as from dense to dilute flow. Flow state, deposit type and flow transformation are strongly dependent on the volume fraction of cohesive fine mud within a flow. Recent field observations show significant deviations from previous widely cited models, and many hypotheses linking flow type to deposit type are poorly tested. There is much still to learn about these remarkable flows.  相似文献   
5.
GEE  MASSON  WATTS  & ALLEN 《Sedimentology》1999,46(2):317-335
New 3·5 kHz profiles and a series of piston cores from the north-west African margin provide evidence that the Saharan debris flow travelled for more than 400 km on a highly fluid, low-friction layer of poorly sorted sediment. Data suggest that the Saharan debris flow is a two-phase event, consisting of a basal, volcaniclastic debris flow phase overlain by a pelagic debris flow phase. Both phases were emplaced on the lower continental rise by a single large debris flow at around 60 ka. The volcaniclastic flow left a thin deposit less than 5 m thick. This contrasts with the much thicker (over 25 m) deposit left by the pelagic debris flow phase. We suggest that pelagic sediment, sourced and mobilized as debris flow from the African continental margin, loaded and destabilized volcaniclastic material in the vicinity of the western Canaries. When subjected to this loading, the volcaniclastic material appears to have formed a highly fluid sandy debris flow, capable of transporting with it the huge volumes of pelagic debris, and contributing to a runout distance extending over 400 km downslope of the Canary Islands on slopes that decrease to as little as 0·05°. It is likely that the pelagic debris formed a thick impermeable slab above the volcanic debris, thus maintaining high pore pressures generated by loading and giving rise to low apparent friction conditions. The distribution of the two debris phases indicates that the volcaniclastic debris flow stopped within a few tens of kilometres after escaping from beneath the pelagic debris flow, probably because of dissipation of excess pore pressure when the seal of pelagic material was removed.  相似文献   
6.
The origin of Antarctic precipitation: a modelling approach   总被引:3,自引:0,他引:3  
The contribution of different moisture sources to Antarctic precipitation for present‐day and glacial conditions is estimated with the NASA/GISS Atmospheric General Circulation Model. Despite its low horizontal resolution (8°×10°), this model simulates reasonably well the broad features of the observed present‐day hydrological cycle. Simulated present‐day Antarctic precipitation is dominated throughout the year by moisture from a subtropical/midlatitude band (30°S−60°S). The moisture supplied to a given coastal area of Antarctica originates mostly in the adjacent oceanic basin; closer to the pole, other oceanic basins can also contribute significantly. Replacing the present‐day sea surface temperatures (SSTs) and sea ice cover in the GCM with those from the CLIMAP oceanic reconstruction for the last glacial maximum (LGM), greatly increases the simulated latitudinal temperature gradient, with the consequence of slightly enhancing the contribution of low latitude moisture to Antarctic precipitation. It also changes the seasonality of the different contributions and thus their budget, particularly in coastal regions. Because the nature of LGM tropical SSTs is still under debate, we performed an additional LGM simulation in which the tropical SSTs are reduced relative to those of CLIMAP. The resulting decrease in the latitudinal gradient brings the relative contributions to Antarctic precipitation more in line with those of the present‐day simulation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号