首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
地质学   14篇
  2020年   2篇
  2019年   2篇
  2017年   3篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2005年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
Quartz-in-garnet inclusion barometry integrated with trace element thermometry and calculated phase relations is applied to mylonitized schists of the Pinkie unit cropping out on the island of Prins Karls Forland, western part of the Svalbard Archipelago. This approach combines conventional and novel techniques and allows deciphering of the pressure–temperature (P–T) evolution of mylonitic rocks, for which the P–T conditions could not have been easily deciphered using traditional methods. The results obtained suggest that rocks of the Pinkie unit were metamorphosed under amphibolite facies conditions at 8–10 kbar and 560–630°C and mylonitized at ~500 to 550°C and 9–11 kbar. The P–T results are coupled with in-situ Th–U-total Pb monazite dating, which records amphibolite facies metamorphism at c. 359–355 Ma. This is the very first evidence of late Devonian–early Carboniferous metamorphism in Svalbard and it implies that the Ellesmerian Orogeny on Svalbard was associated with metamorphism up to amphibolite facies conditions. Thus, it can be concluded that the Ellesmerian collision between the Franklinian margin of Laurentia and Pearya and Svalbard caused not only commonly accepted brittle deformation and weak greenschist facies metamorphism, but also a burial and deformation of rock complexes at much greater depths at elevated temperatures.  相似文献   
2.
3.
The first evidence for ultrahigh-pressure (UHP) metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides is recorded by kyanite-bearing eclogite, found in a basic dyke within a garnet peridotite body exposed close to the lake Friningen in northern Jämtland (central Sweden). UHP metamorphic conditions of ~ 3 GPa and 800 °C, within the stability field of coesite, are constrained from geothermobarometry and calculated phase equilibria for the peak-pressure assemblage garnet + omphacite + kyanite + phengite. A prograde metamorphic evolution from a lower P–T (1.5–1.7 GPa and 700–750 °C) stage during subduction is inferred from inclusions of pargasitic amphibole, zoisite and kyanite in garnet cores. The post-UHP evolution is constrained from breakdown textures, such as exsolutions of kyanite and silica from the Ca-Eskola clinopyroxene. Near isothermal decompression of eclogite to lower crustal levels (~ 0.8–1.0 GPa ) led to formation of sapphirine, spinel, orthopyroxene and diopside at granulite facies conditions. Published age data suggest a Late Ordovician (460–445 Ma) age of the UHP metamorphism, interpreted to be related to subduction of Baltoscandian continental margin underneath an outboard terrane, possibly outermost Laurentia, during the final stages of closure of the Iapetus Ocean. The UHP rocks were emplaced from the hinterland collision zone during Scandian thrusting of the nappes onto the Baltoscandian foreland basin and platform. The record of P–T conditions and geochonological data from UHP rocks occurring within the allochthonous units of the Scandinavian Caledonides indicate that Ordovician UHP events may have affected much wider parts of the orogen than previously thought, involving deep subduction of the continental crust prior to final Scandian collision between Baltica and Laurentia.  相似文献   
4.
5.
6.
SIMS U‐Pb zircon dating of metaigneous rocks of the Nordbreen Nappe from the West Ny‐Friesland terrane (Eastern Basement Province of Svalbard) yields crystallization ages of 1,761 ± 4 Ma for a felsic metatuff and 1,373 ± 4 Ma for a metagabbro dyke. The Palaeoproterozoic age of the metatuff is similar to previously obtained ages for various felsic rocks from the study area, whereas the Mesoproterozoic age of the metagabbro has not been thus far documented on Svalbard. However, a similar age pattern has been reported from Northeast Greenland. Therefore, we conclude that the West Ny‐Friesland terrane can be correlated with age equivalent units of Northeast Greenland. We also explore similarities and dissimilarities between the study area and other terranes of Svalbard and speculate on regional‐scale correlations. Together, the presented new ages provide critical piercing points in palaeogeographic reconstructions of the relatively poorly understood circum‐Arctic region.  相似文献   
7.
Detailed X‐ray compositional mapping and microtomography have revealed the complex zoning and growth history of garnet in a kyanite‐bearing eclogite. The garnet occurs as clusters of coalesced grains with cores revealing slightly higher Ca and lower Mg than the rims forming the coalescence zones between the grains. Core regions of the garnet host inclusions of omphacite with the highest jadeite, and phengite with the highest Si, similar to values in the cores of omphacite and phengite located in the matrix. Therefore, the core compositions of garnet, omphacite, and phengite have been chosen for the peak pressure estimate. Coupled conventional thermobarometry, average P–T, and phase equilibrium modelling in the NCKFMMnASHT system yields P–T conditions of 26–30 kbar at 800–930°C. Although coesite is not preserved, these P–T conditions partially overlap the coesite stability field, suggesting near ultra‐high–pressure (UHP) conditions during the formation of this eclogite. Therefore, the peak pressure assemblage is suggested to have been garnet–omphacite–kyanite–phengite–coesite/quartz–rutile. Additional lines of evidence for the possible UHP origin of the Mi?dzygórze eclogite are the presence of rod‐shaped inclusions of quartz parallel to the c‐axis in omphacite as well as relatively high values of Ca‐Tschermak and Ca‐Eskola components. Late zoisite, rare diopside–plagioclase symplectites rimming omphacite, and minor phlogopite–plagioclase symplectites replacing phengite formed during retrogression together with later amphibole. These retrograde assemblages lack minerals typical of granulite facies, which suggests simultaneous decompression and cooling during exhumation before the crustal‐scale folding that was responsible for final exhumation of the eclogite.  相似文献   
8.
The timing of Svalbard's assembly in relation to the mid‐Paleozoic Caledonian collision between Baltica and Laurentia remains contentious. The Svalbard archipelago consists of three basement provinces bounded by N–S‐trending strike–slip faults whose displacement histories are poorly understood. Here, we report microstructural and mineral chemistry data integrated with 40Ar/39Ar muscovite geochronology from the sinistral Vimsodden‐Kosibapasset Shear Zone (VKSZ, southwest Svalbard) and explore its relationship to adjacent structures and regional deformation within the circum‐Arctic. Our results indicate that strike–slip displacement along the VKSZ occurred in late Silurian–Early Devonian and was contemporaneous with the beginning of the main phase of continental collision in Greenland and Scandinavia and the onset of syn‐orogenic sedimentation in Silurian–Devonian fault‐controlled basins in northern Svalbard. These new‐age constraints highlight possible links between escape tectonics in the Caledonian orogen and mid‐Paleozoic terrane transfer across the northern margin of Laurentia.  相似文献   
9.
Ultrahigh‐pressure metamorphism (UHPM) has recently been discovered in far‐travelled allochthons of the Scandinavian Caledonides, including finding of diamond in the Seve Nappe Complex. This UHPM of Late Ordovician age is older and less recognized than that in the Western Gneiss Region of southwestern Norway, which was related to terminal collision between Baltica and Laurentia. Here we report new evidence of UHPM in the Lower Seve Nappe, recorded by eclogite and garnet pyroxenite from the area of Stor Jougdan in northern Jämtland, central Sweden. Peak‐metamorphic assemblage of eclogite, garnet + omphacite + phengite + rutile + coesite? yields P–T conditions of 2.8–4.0 GPa and 750–900 °C, constrained by conventional geothermobarometry and thermodynamic modelling in the NCKFMTASH system. The prograde metamorphic evolution of the eclogite is inferred from inclusions of zoisite and amphibole in garnet, which are stable at lower pressure, whereas the retrograde evolution is recorded by formation of diopsidic clinopyroxene + plagioclase symplectites after omphacite, growth of amphibole replacing these symplectites, and of titanite around rutile. In garnet pyroxenite the peak‐metamorphic assemblage consists of garnet + orthopyroxene + clinopyroxene + olivine. P–T conditions of 2.3–3.8 GPa and 810–960 °C have been derived based on the conventional geothermobarometry and thermodynamic modelling in the CFMASH and CFMAS systems. Retrograde evolution has been recognized from replacement of pyroxene and garnet by amphibole. The results show that eclogite was metamorphosed during deep subduction of continental crust, most probably derived from the continental margin of Baltica, whereas the origin and tectonic setting of the garnet pyroxenite is ambiguous. The studied pyroxenite/peridotite of Baltican subcontinental affinity could have been metamorphosed as a part of the subducting plate and exhumed due to the downward extraction of a forearc lithospheric block.  相似文献   
10.
Recent fieldwork in Nordenskiöld Land, Svalbard's Southwestern Basement Province, has established the presence of high‐pressure (HP) lithologies. They are strongly retrogressed blueschists consisting mainly of garnet and Ca‐amphibole with remnants of ferroglaucophane and phengite. The pressure–temperature (P–T) conditions were estimated using phase equilibrium modelling in the NCKFMMnASHTO system. P–T estimates based on the garnet, phengite and ferroglaucophane compositional isopleths and modelled paragenetic assemblage indicate peak metamorphism at 470–490 °C and 14–18 kbar. These data fall close to the 7–8 °C km?1 geotherm, which is similar to that from Motalafjella, the only previously known occurrence of blueschists in Svalbard's Caledonides. The newly discovered blueschists could have formed during the early stage of the Caledonian Orogeny and may represent a vestige of missing marginal basins of the western Iapetus developed at the onset of subduction. The likely counterpart to Svalbard's blueschists is the ophiolitic sequence in the Pearya Terrane of northern Ellesmere Island.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号