首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
  国内免费   1篇
地球物理   4篇
地质学   36篇
天文学   1篇
  2016年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  1995年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有41条查询结果,搜索用时 234 毫秒
1.
In order to identify and characterise fluids associated with metamorphic rocks from the Chaves region (North Portugal), fluid inclusions were studied in quartz veinlets, concordant with the main foliation, in graphitic-rich and nongraphitic-rich lithologies from areas with distinct metamorphic grade. The study indicates multiple fluid circulation events with a variety of compositions, broadly within the C–H–O–N–salt system. Primary fluid inclusions in quartz contain low salinity aqueous–carbonic, H2O–CH4–N2–NaCl fluids that were trapped near the peak of regional metamorphism, which occurred during or immediately after D2. The calculated PT conditions for the western area of Chaves (CW) is P=300–350 MPa and T500 °C, and for the eastern area (CE), P=200–250 MPa and T=400–450 °C. A first generation of secondary fluid inclusions is restricted to discrete cracks at the grain boundaries of quartz and consists of low salinity aqueous–carbonic, H2O–CO2–CH4–N2–NaCl fluids. PT conditions from the fluid inclusions indicate that they were trapped during a thermal event, probably related with the emplacement of the two-mica granites.

A second generation of secondary inclusions occurs in intergranular fractures and is characterised by two types of aqueous inclusions. One type is a low salinity, H2O–NaCl fluid and the second consists of a high salinity, H2O–NaCl–CaCl2 fluid. These fluid inclusions are not related to the metamorphic process and have been trapped after D3 at relatively low P (hydrostatic)–T conditions (P<100 MPa and T<300 °C).

Both the early H2O–CH4–N2–NaCl fluids in quartz from the graphitic-rich lithologies and the later H2O–CO2–CH4–N2–NaCl carbonic fluid in quartz from graphitic-rich and nongraphitic-rich lithologies seem to have a common origin and evolution. They have low salinity, probably resulting from connate waters that were diluted by the water released from mineral dehydration during metamorphism. Their main component is water, but the early H2O–CH4–N2–NaCl fluids are enriched in CH4 due to interaction with the C-rich host rocks.

From the early H2O–CH4–N2–NaCl to the later aqueous–carbonic H2O–CO2–CH4–N2–NaCl fluids, there is an enrichment in CO2 that is more significant for the fluids associated with nongraphitic-rich lithologies.

The aqueous–carbonic fluids, enriched in H2O and CH4, are primarily associated with graphitic-rich lithologies. However, the aqueous–carbonic CO2-rich fluids were found in both graphitic and nongraphitic-rich units from both the CW and CE studied areas, which are of medium and low metamorphic grade, respectively.  相似文献   

2.
Lithium is an important geochemical tracer for fluids or solids. However, because the electron microprobe cannot detect Li, variations of Li abundance at the micrometric scale are most often estimated from bulk analyses. In this study, the Li intense emission line at 670.706 nm in optical emission spectroscopy was used to perfect the analysis of Li at the micrometric scale by means of laser-induced breakdown spectroscopy (LIBS). To estimate lithium content for different geological materials, LIBS calibration of the emission line at 670.706 nm was achieved by use of synthetic glasses and natural minerals. The detection limit for this method is ∼5 ppm Li. Three applications to geological materials show the potential of LIBS for lithium determination, namely for Li-bearing minerals, melt inclusions, quartz, and associated fluid inclusions.For spodumene and petalite from granite pegmatite dikes (Portugal), the Li2O concentrations are 7.6 ± 1.6 wt% and 6.3 ± 1.3 wt%, respectively, by use of LIBS. These values agree with ion microprobe analyses, bulk analyses, or both. For eucryptite crystals, the Li concentrations are scattered because grain size is smaller than the LIBS spatial resolution (6 to 8 μm). Lithium concentrations of melt inclusions from the Streltsovka U deposit (Siberia) are in the range of 2 to 6.2 wt% (Li2O) for Li-rich daughter minerals. Lithium estimations on silicate glasses display values between 90 and 400 ppm.Lithium was also analyzed as a trace element in quartz. Transverse profiles were performed in hydrothermal barren quartz veins from the Spanish Central System (Sierra de Guadarrama). The highest Li concentrations (250 to 370 ppm) were found in specific growth bands in conjunction with the observed variation in optical cathodoluminescence intensity. Considering the fluid inclusion analysis, the source of fluid responsible to the Li enrichment in quartz is probably high-salinity fluids derived from sedimentary basins.  相似文献   
3.
The gold showings at Bleida are hosted in Late Pan-African N50–80 °E quartz–hematite–chlorite 1 tension lenses that are related to the activity of major sinistral sub-east–west thrusts. Ores result from three superimposed stages of fluid migration. Gold occurs in microcracks offsetting the earlier minerals. Fluids evolved from COHN compositions with a saline component to boiling aqueous fluids. Pressure and temperature decreased from 50 MPa and 300 °C to less than 4 MPa and 150 °C. Thus, the gold showings at Bleida were formed in a typical geothermal (epithermal) setting, likely controlled by the Late Pan-African magmatism. To cite this article: A. Barakat et al., C. R. Geoscience 334 (2002) 35–41  相似文献   
4.
The WNW–ESE trending Toulourenc Fault Zone (TFZ) is the western segment of the major Ventoux–Lure Fault Zone, which separates the Provençal platform from the Baronnies Vocontian Basin. The TFZ was subject to polyphased Mid-Cretaceous movements, during the Early Aptian and Middle–Late Albian times. The latter faulting episode generated conglomerates and olistoliths resulting from dismantled faultscarps cutting Barremian–Bedoulian limestones. The deformation is related to compressional wrench faulting (NE–SW sinistral faults; dextral component for the TFZ). It induced the uplift of the northwestern corner of the platform, as indicated by a mid-Cretaceous hiatus (Early Aptian pro parte to Early Albian) narrowly delimited in space. The opening of submeridian grabens within the platform favoured the northward transit of channelised coarse-grained Albian sands originating from a southern area. To cite this article: C. Montenat et al., C. R. Geoscience 336 (2004).  相似文献   
5.
6.
Aqueous-carbonaceous and later pure aqueous fluid inclusions in quartz from a ferberite (Fe.95Mn.05 WO4) vein within the low-grade metamorphic aureole of the Borne granite (French Massif Central) have been studied by microthermometry and Raman spectrometry. The bulk V?-X properties of the aqueous-carbonaceous inclusions have been derived using the equation of state of Heyenet al. (1982) for the low-temperature CO2-CH4 system. A P-T path has been proposed for their trapping using the equations of state of Jacobs and Kerrick (1981a) for the H2O-CO2-CH4 system. Two main episodes were reconstructed for the history of the aqueous-carbonaceous fluid. (1) Primary H2O-CO2-CH4 vapourrich inclusions in quartz indicated the early circulation of a low-density fluid (65 mole% H2O-34 mole% CO2-1 mole% CH4 and traces of N2: d = 0.35 gcm?3) at around 550° ± 50°C and 700 ± 100 bar. Fluid cooled approximately isobarically to 450°-400°C and was progressively diluted by H2O with a concomitant increase in density. The fO2 of the H2OCO2-CH4 fluid, estimated from the equilibrium CO2 + 2H2O CH4 + 2O2, first ranged from 10?22 to 10?27 bar, close to the Q-F-M buffer. Within analytical errors, these values were consistent with the presence of graphite in equilibrium with the fluid. (2) A drop in PCO2, and therefore a drop in fO2, was recorded by the secondary liquid-rich inclusions in quartz. The inclusions, formed at and below 400°C, were composed of H2O and CH4 only, and fO2 at that stage was below that fixed by the graphite-fluid equilibrium. This second episode in the fluid-rock system could be explained by the drop of temperature below the blocking temperature of the graphite-fluid equilibrium. According to this interpretation, the blocking of the graphite-fluid equilibrium occurred at T ≥ 370°C and probably at 400°C on account of the pressure correction. Mass spectrometric data show that ferberite contains H2O, CO2 and CH4 in fluid inclusions, which lie in the gap of the V?-X properties of the aqueouscarbonaceous fluid in quartz. Deposition of ferberite probably occurred at around 400°C, the previously inferred blocking temperature, resulting from either the drop in PCO2, the drop fO2 and/or the related pH-increase.It is concluded that the existence of a blocking-temperature for the graphite-fluid chemical equilibrium may be a critical factor for maintaining a stable fluid pressure gradient in geothermal systems occurring under greenschist facies conditions in graphite-bearing rocks.  相似文献   
7.
Fluid inclusions and F, Cl concentration of hydrous minerals were analysed in the coesite-pyrope quartzite, the interlayered jadeite quartzite and their country-rock gneiss from the Dora-Maira massif using a combination of microthermometry, Raman spectrometry, synchrotron X-ray microfiuorescence and electron microprobe analysis. Three populations of fluid inclusions were recognized texturally and can be related to distinct metamorphic stages. A low-salinity aqueous fluid occurs in the retrogressed country gneiss and as late secondary inclusions in jadeite quartzite and chloritized pyrope. An earlier secondary population is found in matrix quartz of the jadeite- and pyro-pe-quartzites. This population can be related to the early decompression and so to incipient breakdown of garnet into phlogopite-bearing assemblages. The inclusion fluid is highly saline (up to 84 wt% equivalent NaCl) and contains Na, Ca, Fe, Cu and Zn as major cations. In pyrope quartzite, additional K was found in these brines, which locally coexist with CO2-rich inclusions. The oldest fluid inclusions are preserved in kyanite grains included in fresh pyrope and in pyrope itself. In pyrope, all inclusions have decrepitated and contain magnesite, an Mg-phosphate, sheet-silicate(s), a chloride and an opaque phase, with no fluid preser ved. In contrast, the kyanite inclusions in pyrope preserve primary H2O-CO2 low-salinity fluid inclusions, probably owing to the low compressibility of the kyanite inclusions and host garnet. In spite of in-situ re-equilibration, these inclusions can be interpreted as relics of the dehydration fluid that attended pyrope growth. These correlations between textural and chemical fluid inclusion data and metamorphic stages are consistent with the fluid composition calculated from the halogen content of different generations of phlogopite and biotite. The preservation of different fluid compositions, both in time and space, is evidence for local control and possibly origin of the fluids, in agreement with isotopic data. These results, in particular the absence of CO2 in the jadeite quartzite, are best interpreted in terms of a fluid-melt system evolution. With increasing metamorphism, partitioning of H2O, Na, Ca, Fe and heavy metals into melt (jadeite quartzite) and Mg, Na/K, F, CO2 and P(?) into a residual aqueous fluid can account for depletion in Na, Ca and Fe of the pyrope quartzite. During the retrograde path, a H 2 O rose as melt crystallized, generating the two populations of hypersaline and water-rich fluids that were highly reactive to pyrope. The process of fluid-melt interaction envisioned here coupled with models of melt extraction in subduction zones provides an attractive opportunity for the instantaneous ( < 1 Ma) and selective transport of elements between a downgoing slab and the overlying mantle wedge.  相似文献   
8.
High levels of arsenic in groundwater and drinking water are a major health problem. Although the processes controlling the release of As are still not well known, the reductive dissolution of As-rich Fe oxyhydroxides has so far been a favorite hypothesis. Decoupling between arsenic and iron redox transformations has been experimentally demonstrated, but not quantitatively interpreted. Here, we report on incubation batch experiments run with As(V) sorbed on, or co-precipitated with, 2-line ferrihydrite. The biotic and abiotic processes of As release were investigated by using wet chemistry, X-ray diffraction, X-ray absorption and genomic techniques. The incubation experiments were carried out with a phosphate-rich growth medium and a community of Fe(III)-reducing bacteria under strict anoxic conditions for two months. During the first month, the release of Fe(II) in the aqueous phase amounted to only 3% to 10% of the total initial solid Fe concentration, whilst the total aqueous As remained almost constant after an initial exchange with phosphate ions. During the second month, the aqueous Fe(II) concentration remained constant, or even decreased, whereas the total quantity of As released to the solution accounted for 14% to 45% of the total initial solid As concentration. At the end of the incubation, the aqueous-phase arsenic was present predominately as As(III) whilst X-ray absorption spectroscopy indicated that more than 70% of the solid-phase arsenic was present as As(V). X-ray diffraction revealed vivianite Fe(II)3(PO4)2.8H2O in some of the experiments. A biogeochemical model was then developed to simulate these aqueous- and solid-phase results. The two main conclusions drawn from the model are that (1) As(V) is not reduced during the first incubation month with high Eh values, but rather re-adsorbed onto the ferrihydrite surface, and this state remains until arsenic reduction is energetically more favorable than iron reduction, and (2) the release of As during the second month is due to its reduction to the more weakly adsorbed As(III) which cannot compete against carbonate ions for sorption onto ferrihydrite. The model was also successfully applied to recent experimental results on the release of arsenic from Bengal delta sediments.  相似文献   
9.
Glassy orthopyroxene granodiorite-tonalite (named pincinite after type locality) was described from basaltic lapilli tuffs of the Pliocene maar near Pinciná village in the Slovakian part of the Pannonian Basin. Two pincinite types exhibit a qualitatively similar mineral composition (quartz, An20–55 plagioclase, intergranular silicic glass with orthopyroxene and ilmenite, ±K-feldspar), but strongly different redox potential and formation PT conditions. Peraluminous pincinite is reduced (6–7% of total iron as Fe3+ in corundum-normative intergranular dacitic glass) and contains ilmenite with 8–10 mol% Fe2O3 and orthopyroxene dominated by ferrosilite. High-density (up to 0.85 g/cm3) primary CO2 inclusions with minor H2, CH4, H2S, CO and N2 (<2 mol% total) are present in Qtz and Plg. Equilibrium PT conditions inferred from the intergranular Opx–Ilm–Glass assemblage and fluid density correspond to 1,170±50°C, 5.6±0.4 kbar, respectively. Metaluminous pincinite is more oxidised (25–27% of total iron as Fe3+ in diopside-normative intergranular glass of rhyolite–trachyte–dacite composition) and contains Fe2O3-rich ilmenite (17–29 mol%) associated with enstatite. Fluid inclusions are composed of CO2–H2O mixtures with up to 38 mol% H2O. Raman spectroscopy revealed H2S along with dominant CO2 in the carbonic phase. Equilibrium PT parameters for the intergranular Opx–Ilm–Glass assemblage correspond to 740±15°C, 2.8±0.1 kbar, respectively. Reducing gas species (<2 mol% total) in the CO2-inclusions of the peraluminous pincinite resulted from hydrogen diffusion due to fH2 gradient imposed during decrease of redox potential from the log fO2 values near QFM during Qtz + Plg growth, to QFM-2 incidental to the superimposed Opx + Ilm assemblage in the intergranular melt. The decrease in oxygen fugacity was recorded also in the metaluminous pincinite, where log fO2 values changed from ~QFM + 2.6 to QFM + 0.4, but hydrogen diffusion did not occur. Absence of OH-bearing minerals, major and trace element abundances (e.g. REE 300–320, Nb 55–57, Th 4–31, Zr 240–300 ppm, FeOtot/MgO up to 11), and Sr–O isotope ratios in the pincinites are diagnostic of high-temperature anorogenic magmas originated by dehydration melting of biotite in quartz-feldspathoid crust (87Sr/86Sr>0.705–0.706, 18O>9 V-SMOW) around alkali basalt reservoir in depths between 17 and 20 km, and around late stage derivatives of the basalt fractionation, intruding the crust up to depths of 10–11 km. Low water activity in the pincinite parental melt was caused by CO2-flux from the Tertiary basaltic reservoirs and intrusions. The anatexis leads to generation of a melt-depleted granulitic crust beneath the Pannonian Basin, and the pincinites are interpreted as equivalents of igneous charnockites and enderbites quenched at temperatures above solidus and unaffected by sub-solidus re-equilibration and metamorphic overprint.  相似文献   
10.
The Moulin de Chéni orogenic gold deposit is the only granite-hosted deposit of the Saint-Yrieix district, French Massif Central. It occurs in 338±1.5 Ma-old peraluminous leucogranites and is characterized by intense microfracturing and bleaching of the granite in relation to pervasive sulfide crystallization. Formation of quartz veins and gold deposition occurred in two successive stages: an early mesozonal stage of quartz-sulfide (Fe-As-S) deposition, usually devoid of gold and a late epizonal stage of base metal and gold deposition. Both stages postdate peak metamorphism and granite intrusion. The genesis of the deposit is the result of four successive fluid events: (1) Percolation of aqueous-carbonic metamorphic fluids under an assumed lithostatic regime of 400–450 °C, at a maximum depth of 13 km; (2) Formation of the main quartz lodes with coeval K-alteration and introduction of As and S from aqueous-carbonic fluids percolating along regional faults. Arsenopyrite and pyrite deposition was linked to the alteration of Fe-silicates into K-feldspar and phengite at near-constant iron content in the bulk granite. Temperature was similar to that of the preceding stage, but pressure decreased to 100–50 MPa, suggesting rapid uplift of the basement up to 7.5 km depth; (3) The resulting extensional tectonic leads to the deposition of gold, boulangerite, galena and sphalerite in brecciated arsenopyrite and pyrite from aqueous fluids during a mixing process. Temperature and salinity decrease from 280 to 140 °C and 8.1 wt% eq. NaCl to 1.6 wt% eq. NaCl, respectively; (4) Sealing of the late fault system by barren comb quartz which precipitated from dilute meteoric aqueous fluids (1.6 wt% eq. NaCl to 0.9 wt% eq. NaCl) under hydrostatic conditions at 200–150 °C.Editorial handling: B. Lehmann  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号