首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
地球物理   1篇
地质学   12篇
海洋学   3篇
天文学   6篇
自然地理   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
排序方式: 共有23条查询结果,搜索用时 515 毫秒
1.
Northwest Africa (NWA) 7533 is a Martian regolith breccia. This meteorite (and its pairings) offers a good opportunity to study (near‐) surface processes that occurred on early Mars. Here, we have conducted a transmission electron microscope study of medium‐ and coarse‐grained (a few tens to hundreds of micrometers) Ca‐rich pyroxene clasts in order to define their thermal and shock histories. The pyroxene grains have a high‐temperature (magmatic) origin as revealed by the well‐developed pigeonite–augite exsolution microstructure. Exsolution lamella characteristics (composition, thickness, and spacing) indicate a moderately slow cooling. Some of the pyroxene clasts display evidence for local decomposition into magnetite and silica at the submicron scale. This phase decomposition may have occurred at high temperature and occurred at high oxygen fugacity at least 2–3 log units above the QFM buffer, after the formation of the exsolution lamellae. This corresponds to oxidizing conditions well above typical Martian magmatic conditions. These oxidizing conditions seem to have prevailed early and throughout most of the history of NWA 7533. The shock microstructure consists of (100) mechanical twins which have accommodated plastic deformation. Other pyroxene shock indicators are absent. Compared with SNC meteorites that all suffered significant shock metamorphism, NWA 7533 appears only mildly shocked. The twin microstructure is similar from one clast to another, suggesting that the impact which generated the (100) twins involved the compacted breccia and that the pyroxene clasts were unshocked when they were incorporated into the NWA 7533 breccia.  相似文献   
2.
Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts’ scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows:
(1)
LDP#1: Provide multiple experiences: varied field science activities will hone astronauts’ abilities to adapt to novel scientific opportunities
(2)
LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery
(3)
LDP#3: Provide a relevant experience—the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning
(4)
LDP#4: Provide a social learning experience—the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts’ abilities to think and perform like a field scientist.
The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved from field school alone. This will enhance their ability to execute, explore and adapt as in-field situations require.  相似文献   
3.
4.
Floodplain deposition is an essential part of the Holocene sediment dynamics of many catchments and a thorough dating control of these floodplain deposits is therefore essential to understand the driving forces of these sediment dynamics. In this paper we date floodplain and colluvial deposition in the Belgian Dijle catchment using accelerator mass spectrometric radiocarbon and optical stimulated luminescence dating. Relative mass accumulation curves for the Holocene were constructed for three colluvial sites and 12 alluvial sites. A database was constructed of all available radiocarbon ages of the catchment and this database was analysed using relative sediment mass accumulation rates and cumulative probability functions of ages and site‐specific sedimentation curves. Cumulative probability functions of ages were split into different depositional environments representing stable phases and phases of accelerated clastic deposition. The results indicate that there is an important variation between the different dated sites. After an initial stable early and middle Holocene phase with mainly peat growth in the floodplains, clastic sedimentation rates increased from 4000 BC on. This first phase was more pronounced and started somewhat earlier for colluvial deposits then for alluvial deposits. The main part of the Holocene deposits, both in colluvial and alluvial valleys, was deposited during the last 1 ka. The sedimentation pattern of the individual dated sites and the catchment‐wide pattern indicate that land use changes are responsible for the main variations in the Holocene sediment dynamics of this catchment, while the field data do not provide indications for a climatological influence on the sediment dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
5.
To date, studies of the stability of subsurface ice in the McMurdo Dry Valleys of Antarctica have been mainly based on climate-based vapor diffusion models. In University Valley (1800 m), a small glacier is found at the base of the head of the valley, and adjacent to the glacier, a buried body of massive ice was uncovered beneath 20–40 cm of loose cryotic sediments and sandstone boulders. This study assesses the origin and stability of the buried body of massive ice by measuring the geochemistry and stable O–H isotope composition of the ice and applies a sublimation and molecular diffusion model that accounts for the observed trends. The results indicate that the buried massive ice body represents an extension of the adjacent glacier that was buried by a rock avalanche during a cold climate period. The contrasting δ18O profiles and regression slope values between the uppermost 6 cm of the buried massive ice (upward convex δ18O profile and SD-18O = 5.1) and that below it (progressive increase in δ18O and SD-18O = 6.4) suggest independent post-depositional processes affected the isotope composition of the ice. The upward convex δ18O profile in the uppermost 6 cm is consistent with the ice undergoing sublimation. Using a sublimation and molecular diffusion model, and assuming that diffusion occurred through solid ice, the sublimation rate needed to fit the measured δ18O profile is 0.2 ? 10? 3 mm yr? 1, a value that is more similar to net ice removal rates derived from 3He data from cobbles in Beacon Valley till (7.0 ? 10? 3 mm yr? 1) than sublimation rates computed based on current climate (0.1–0.2 mm yr?1). We suggest that the climate-based sublimation rates are offset due to potential ice recharge mechanisms or to missing parameters, particularly the nature and thermo-physical properties of the overlying sediments (i.e., temperature, humidity, pore structure and ice content, grain size).  相似文献   
6.
In desert environments with low water and salt contents, rapid thermal variations may be an important source of rock weathering. We have obtained temperature measurements of the surface of rocks in hyper-arid hot and cold desert environments at a rate of 1/s over several days. The values of temperature change over 1-second intervals were similar in hot and cold deserts despite a 30 °C difference in absolute rock surface temperature. The average percentage of the time dT/dt > 2 °C/min was ~ 8 ± 3%, > 4 °C/min was 1 ± 0.9%, and > 8 °C/min was 0.02 ± 0.03%. The maximum change over a 1-second interval was ~ 10 °C/min. When sampled to simulate data taken over intervals longer than 1 s, we found a reduction in time spent above the 2 °C/min temperature gradient threshold. For 1-minute samples, the time spent above any given threshold was about two orders of magnitude lower than the corresponding value for 1-second sampling. We suggest that a rough measure of efficacy of weathering as a function of frequency is the product of the percentage of time spent above a given threshold value multiplied by the damping depth for the corresponding frequency. This product has a broad maximum for periods between 3 and 10 s.  相似文献   
7.

This study demonstrates that the bladed texture, which is common in epithermal, low-sulfidation (adularia-sericite) precious metal deposits, can serves as exploration vector towards precious metal mineralization. The paper presents two styles of bladed texture in the Kuklitsa gold deposit (Krumovgrad goldfield, SE Bulgaria) observed at both different altitude and lateral position in respect to regional low-angle detachment fault. The first style has formed as a crackle breccia just above the detachment fault where bladed texture consists of 10–20 vol % pseudorhombic adularia, 90-80 vol % quartz, scarce pyrite, and electrum, which is often observed under optical microscope. The second style is present in steep veins which fill listric faults of sharp tectonic contacts. It is developed at a higher level relative to the detachment fault. Bladed texture there consists of 1–2 vol % pseudorhombic adularia, 99-98 vol % quartz, and scarce both electrum and pyrite. Electrum of the two styles of bladed texture comprises only gold and silver but in different proportions with a higher gold content for the first style: fineness of 765, on average, for the first style vs. fineness of 692 for the second one. In this way, it is found that the adularia abundance correlates positively with the electrum one and negatively with the quartz abundance. The author uses the proportions of adularia, quartz and electrum, the fineness of electrum, and the relative distance to the detachment fault to conclude that the first style of bladed texture has been formed at higher temperature relative to the second style. The author infers that the first style is promising for mineralization of higher grade. Methods used comprise field observations and sampling, optical and electron microscopy, powder X-ray diffraction and electron microprobe analysis.

  相似文献   
8.
9.
Marinova  Yu. G.  Levchenko  O. V.  Portnyagin  M. V.  Werner  R. 《Oceanology》2020,60(5):691-703
Oceanology - The Osborn Plateau is a large intraplate elevation in the eastern Indian Ocean, which has been poorly studied by geological and geophysical methods. On cruise SO258/1 aboard the R/V...  相似文献   
10.
Northwest Africa 7533, a polymict Martian breccia, consists of fine‐grained clast‐laden melt particles and microcrystalline matrix. While both melt and matrix contain medium‐grained noritic‐monzonitic material and crystal clasts, the matrix also contains lithic clasts with zoned pigeonite and augite plus two feldspars, microbasaltic clasts, vitrophyric and microcrystalline spherules, and shards. The clast‐laden melt rocks contain clump‐like aggregates of orthopyroxene surrounded by aureoles of plagioclase. Some shards of vesicular melt rocks resemble the pyroxene‐plagioclase clump‐aureole structures. Submicron size matrix grains show some triple junctions, but most are irregular with high intergranular porosity. The noritic‐monzonitic rocks contain exsolved pyroxenes and perthitic intergrowths, and cooled more slowly than rocks with zoned‐pyroxene or fine grain size. Noritic material contains orthopyroxene or inverted pigeonite, augite, calcic to intermediate plagioclase, and chromite to Cr‐bearing magnetite; monzonitic clasts contain augite, sodic plagioclase, K feldspar, Ti‐bearing magnetite, ilmenite, chlorapatite, and zircon. These feldspathic rocks show similarities to some rocks at Gale Crater like Black Trout, Mara, and Jake M. The most magnesian orthopyroxene clasts are close to ALH 84001 orthopyroxene in composition. All these materials are enriched in siderophile elements, indicating impact melting and incorporation of a projectile component, except for Ni‐poor pyroxene clasts which are from pristine rocks. Clast‐laden melt rocks, spherules, shards, and siderophile element contents indicate formation of NWA 7533 as a regolith breccia. The zircons, mainly derived from monzonitic (melt) rocks, crystallized at 4.43 ± 0.03 Ga (Humayun et al. 2013 ) and a 147Sm‐143Nd isochron for NWA 7034 yielding 4.42 ± 0.07 Ga (Nyquist et al. 2016 ) defines the crystallization age of all its igneous portions. The zircon from the monzonitic rocks has a higher Δ17O than other Martian meteorites explained in part by assimilation of regolith materials enriched during surface alteration (Nemchin et al. 2014 ). This record of protolith interaction with atmosphere‐hydrosphere during regolith formation before melting demonstrates a thin atmosphere, a wet early surface environment on Mars, and an evolved crust likely to have contaminated younger extrusive rocks. The latest events recorded when the breccia was on Mars are resetting of apatite, much feldspar and some zircons at 1.35–1.4 Ga (Bellucci et al. 2015 ), and formation of Ni‐bearing pyrite veins during or shortly after this disturbance (Lorand et al. 2015 ).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号