首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   2篇
自然地理   2篇
  2014年   1篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Paleoclimate reconstructions based on biological proxies present methodological challenges, especially during non-analog conditions, such as the early Holocene. Here, two chironomid-based training sets from Finland were amalgamated to create a more accurate transfer function of summer air temperature. The aim was to reconstruct Holocene paleoclimate in northernmost Lapland, in an area that has been either too warm or too cold for reliable reconstructions using the original calibration models. The results showed that the combined calibration model had improved performance statistics. The temperature trends inferred from the downcore chironomid record using the original and combined models were very similar. However, there were major changes in their absolute values with the combined model showing greatly improved accuracy. The chironomid-based temperature reconstruction showed significant correlation with the previous pollen-based reconstructions from northwestern Finnish Lapland. However, differences were observed in the temperature trends of the early Holocene, when the chironomid-inferred temperatures rapidly increased, but the pollen-based reconstructions lagged behind suggesting that a cool climate continued for much longer. However, similar to the chironomid record, new plant macrofossil evidence from northwestern Finland also showed warmer-than-present early Holocene temperatures. Therefore, we conclude that the early Holocene was probably warm in northern Lapland.  相似文献   
2.
This study used palaeolimnological approaches to determine how Holocene climatic and environmental changes affected aquatic assemblages in a subarctic lake. Sediments of the small Lake Njargajavri, in northern Finnish Lapland above the present treeline, were studied using multi-proxy methods. The palaeolimnological development of the lake was assessed by analyses of chironomids, Cladocera and diatoms. The lake was formed in the early Holocene and was characterized by prominent erosion and leaching from poorly developed soils before the establishment of birch forests, resulting in a high pH and trophic state. The lake level started to lower as early as ca. 10,200 cal. BP. In the resulting shallow basin, rich in aquatic mosses, pH decreased and a diverse cladoceran and chironomid assemblage developed. It is likely that there was a slight rise in the water level ca. 8000 cal. BP. Later, during the mid-Holocene characterized by low effective moisture detected elsewhere in Fennoscandia, the lake probably completely dried out; this is manifest as a hiatus in the stratigraphy. The sediment record continues from ca. 5000 cal. BP onwards as the lake formed again due to increased effective moisture. The new lake was characterized by very low pH. The possible spread of pine to the catchment and the development of heath community may have contributed to the unusually steep (for northern Fennoscandia) decline in pH via change in soils, together with the natural decrease in leaching of base cations. Furthermore, the change in pH may have been driven by cooling climate, affecting the balance of dissolved inorganic carbon in the lake.  相似文献   
3.
Holocene development of aquatic plant communities in subarctic Lake Njargajavri, Finnish Lapland, was studied using plant macrofossil analysis. Sediment lithology, grain size, and C/N ratios showed distinct lithological phases, indicating past water-level fluctuations. The colonization of limnophytes took place right after the formation of the lake (after ca. 11,500 cal. BP). The earliest plant macrofossil assemblages indicate nutrient-rich conditions and a warmer climate than at present. After this primary succession phase, aquatic vascular plants were replaced by aquatic bryophytes (before ca. 10,200 cal. BP). Together with lithological evidence, we interpret this as being related to the lowering water table. According to palynological, chronological, and sedimentological evidence, Njargajavri underwent a very shallow phase between ca. 10,000 and 9500 cal. BP and dried out for an unknown period of time between ca. 8000 and 5000 cal. BP. After the dry phase, the water level started to rise and sedimentation at the coring point began again. Despite re-establishment of the lacustrine habitat, late-Holocene plant macrofossil data show no marked recolonization of either vascular limnophytes or bryophytes. The reason for all limnophytes being presently absent from the lake remains speculative. The lack of nutrients and/or the cooling climate (especially shortening of the open-water season) during the latter part of the Holocene may explain why limnophytes failed to recolonize the lake.  相似文献   
4.
Palaeoclimatic records derived from a variety of independent proxies provide evidence of post‐glacial changes of temperature and soil moisture in northern Fennoscandia. We use pollen percentage, pollen influx, stomatal and chironomid records from Toskaljavri, a high‐altitude lake in northern Finland, to assess how treelines and alpine vegetation there have responded to these climate changes. The evidence suggests that the cool, moist climate of the early Holocene supported birch forest in the area 9600 cal. yr BP onwards and that a rise of temperature triggered the immigration of pine at 8300 cal. yr BP. At 6100–4000 cal. yr BP altitudinal treeline in the area was formed by pine, in contrast to the modern situation where mountain birch reaches a higher elevation. Alpine vegetation also demonstrates clear changes. Plant communities typical of dry, oligotrophic heaths of northern Fennoscandia expanded during the dry climatic period at 7000–4000 cal. yr BP and decreased in response to cooler and moister conditions after 4000 cal. yr BP. Alpine plant communities favouring moist sites show an inverse pattern, expanding after a change towards moister climate after 4000 cal. yr BP. In a redundancy analysis (RDA), a statistically significant proportion of the variability in the total chironomid assemblages was captured by changes in the pollen types reflecting alpine vegetation typical of moist sites. Although chironomid community changes appeared to follow the major patterns in the alpine vegetation succession, the present study does not support a direct link between the changing treeline position and chironomid stratigraphy. Rather, the data indicate that the terrestrial and aquatic environments have each responded directly to the same ultimate cause, namely changing Holocene climate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号