首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
测绘学   1篇
地球物理   5篇
地质学   3篇
天文学   1篇
自然地理   1篇
  2020年   1篇
  2016年   2篇
  2013年   3篇
  2008年   1篇
  2004年   1篇
  2003年   1篇
  1996年   1篇
  1977年   1篇
排序方式: 共有11条查询结果,搜索用时 218 毫秒
1.
In light of the many improvements within 3D urban modeling and Location‐Based Services, this article provides a timely review of the state‐of‐the‐art on integrating indoor and outdoor spaces in pedestrian navigation guidance aids. With people moving seamlessly between buildings and surrounding areas, navigation guidance tools should extend from merely outdoor or indoor guidance, to provide support in the combined indoor‐outdoor context. This article first examines the challenges and complexities of integrating indoor and outdoor spaces into a single navigation system. Next, by using objective selection criteria, 36 relevant studies were withheld and further reviewed on their specific developments in data model requirements, and algorithmic and context support for integrated IO navigation systems. This review shows that the challenges of dealing with both indoor and outdoor space structures, while taking into account pedestrian's freer use of space, currently complicate the proposition of a unified IO space concept for navigation. However, there are some ongoing developments (e.g. context definitions, algorithmic extensions, increased data availability, growing awareness of pedestrians’ perception during wayfinding) that will help to bring outdoor and indoor spaces closer together in the realm of combined geospatial analysis.  相似文献   
2.
ABSTRACT

Predicting the impacts of climate change on water resources remains a challenging task and requires a good understanding of the dynamics of the forcing terms in the past. In this study, the variability of precipitation and drought patterns is studied over the Mediterranean catchment of the Medjerda in Tunisia based on an observed rainfall dataset collected at 41 raingauges during the period 1973–2012. The standardized precipitation index and the aridity index were used to characterize drought variability. Multivariate and geostatistical techniques were further employed to identify the spatial variability of annual rainfall. The results show that the Medjerda is marked by a significant spatio-temporal variability of drought, with varying extreme wet and dry events. Four regions with distinct rainfall regimes are identified by utilizing the K-means cluster analysis. A principal component analysis identifies the variables that are responsible for the relationships between precipitation and drought variability.  相似文献   
3.
Abstract

The SWAT model was tested to simulate the streamflow of two small Mediterranean catchments (the Vène and the Pallas) in southern France. Model calibration and prediction uncertainty were assessed simultaneously by using three different techniques (SUFI-2, GLUE and ParaSol). Initially, a sensitivity analysis was conducted using the LH-OAT method. Subsequent sensitive parameter calibration and SWAT prediction uncertainty were analysed by considering, firstly, deterministic discharge data (assuming no uncertainty in discharge data) and secondly, uncertainty in discharge data through the development of a methodology that accounts explicitly for error in the rating curve (the stage?discharge relationship). To efficiently compare the different uncertainty methods and the effect of the uncertainty of the rating curve on model prediction uncertainty, common criteria were set for the likelihood function, the threshold value and the number of simulations. The results show that model prediction uncertainty is not only case-study specific, but also depends on the selected uncertainty analysis technique. It was also found that the 95% model prediction uncertainty interval is wider and more successful at encompassing the observations when uncertainty in the discharge data is considered explicitly. The latter source of uncertainty adds additional uncertainty to the total model prediction uncertainty.
Editor D. Koutsoyiannis; Associate editor D. Gerten

Citation Sellami, H., La Jeunesse, I., Benabdallah, S., and Vanclooster, M., 2013. Parameter and rating curve uncertainty propagation analysis of the SWAT model for two small Mediterranean watersheds. Hydrological Sciences Journal, 58 (8), 1635?1657.  相似文献   
4.
5.
Water management in the Andarax river basin (Almeria, Spain) is a multi-objective, multi-participant, long-term decision-making problem that faces several challenges. Adequate water allocation needs informed decisions to meet increasing socio-economic demands while respecting the environmental integrity of this basin. Key players in the Andarax water sector include the municipality of Almeria, the irrigators involved in the intensive greenhouse agricultural sector, and booming second residences. A decision support system (DSS) is developed to rank different sustainable planning and management alternatives according to their socio-economic and environmental performance. The DSS is intimately linked to sustainability indicators and is designed through a public participation process. Indicators are linked to criteria reflecting stakeholders concerns in the 2005 field survey, such as fulfilling water demand, water price, technical and economical efficiency, social and environmental impacts. Indicators can be partly quantified after simulating the operation of the groundwater reservoir over a 20-year planning period and partly through a parallel expert evaluation process. To predict the impact of future water demand in the catchment, several development scenarios are designed to be evaluated in the DSS. The successive multi-criteria analysis of the performance indicators permits the ranking of the different management alternatives according to the multiple objectives formulated by the different sectors/participants. This allows more informed and transparent decision-making processes for the Andarax river basin, recognizing both the socio-economic and environmental dimensions of water resources management.  相似文献   
6.
Solute transport experiments using a non-reactive tracer were conducted on short, undisturbed, saturated columns of a sandy loam soil. All columns, 20 cm in diameter and 20 cm long, were collected along a transect of 35 m. Most of the soil columns had pre-existing macropores. The columns were leached at a steady flow-rate under ponding conditions. The resulting breakthrough curves (BTCs) showed a large heterogeneity. Several of the BTCs displayed early breakthrough and long tailing. All the data were interpreted in terms of dimensional time moments, the classical convection-dispersion equation (CDE) and the mobile-immobile transport model (MIM). Experimental time moments were found to vary significantly among the different BTCs. Analysis of the time moments also revealed that the variance of the field-scale BTC was several times larger than the average of the local-scale variance. The pore water velocity v and dispersion coefficient D were obtained by fitting the CDE to the local-scale BTCs, resulting in an average dispersivity of 7·4 cm. Frequency distributions for the CDE parameters v and D were equally well described by a normal or log-normal probability density function (pdf). When a log-normal pdf for D is considered, the variance of the loge transformed D values (σln D2) was found to be 2·1. For the MIM model, two additional parameters were fitted: the fraction of mobile water, θm/θ, and the first-order mass transfer coefficient, α. The MIM was more successful in describing the data than the CDE transport model. For the MIM model, the average dispersivity was about 2 cm. The MIM parameters v, D and θm/θ were best described by a log-normal pdf rather than a normal pdf. Only the parameter α was better described by a normal pdf. Mobile water fractions, θm/θ ranged from 0·01 to 0·98, with a mean of 0·43 (based on a log-normal pdf). When the CDE and MIM were applied to the data, the fitted pore water velocities, v, compared favourably with the effective pore water velocities, veff, obtained from moment analysis.  相似文献   
7.
ABSTRACT

Present-day indoor navigation systems are often not well adapted to the specific needs and requirements of its users. This research aims at improving those indoor navigation systems by providing navigation support that cognitively closer to user preferences and behaviour. More specifically, the focus is on the implementation of an accurate turn calculation method in a turn minimization algorithm, aiming to lower the complexity of routes and route instructions. This new-introduced perception-based turn calculation procedure is based on a direct door-to-door walking pattern, and, in contrast to previous algorithms, independent of the underlying indoor network type. It takes into account the effects of geometry of indoor space on human movement. To evaluate its functioning, both the traditional algorithm and the proposed perception-based algorithm are applied in the fewest turns path algorithm. It is demonstrated that the proposed algorithm accurately calculates turns in alignment with people’s perception. The implementation of the calculation algorithm in the fewest turns path algorithm also allows future applications in indoor simplest path algorithms, and overall contributes to cognitively richer indoor navigation systems.  相似文献   
8.
ABSTRACT

Climate models and hydrological parameter uncertainties were quantified and compared while assessing climate change impacts on monthly runoff and daily flow duration curve (FDC) in a Mediterranean catchment. Simulations of the Soil and Water Assessment Tool (SWAT) model using an ensemble of behavioural parameter sets derived from the Generalized Likelihood Uncertainty Estimation (GLUE) method were approximated by feed-forward artificial neural networks (FF-NN). Then, outputs of climate models were used as inputs to the FF-NN models. Subsequently, projected changes in runoff and FDC were calculated and their associated uncertainty was partitioned into climate model and hydrological parameter uncertainties. Runoff and daily discharge of the Chiba catchment were expected to decrease in response to drier and warmer climatic conditions in the 2050s. For both hydrological indicators, uncertainty magnitude increased when moving from dry to wet periods. The decomposition of uncertainty demonstrated that climate model uncertainty dominated hydrological parameter uncertainty in wet periods, whereas in dry periods hydrological parametric uncertainty became more important.
Editor M.C. Acreman; Associate editor S. Kanae  相似文献   
9.
In the present paper the effect of a sinusoidal modulation of an electromagnetic field on the invariance of the magnetic moment is studied. Such a generalized invariant plays an important role in problems concerning the motion of charged particles in the non-uniform magnetic field of the magnetosphere or the solar wind. In order to find an adiabatic invariant J, a canonical transformation is introduced, and J is expanded in an asymptotic series in the relative modulation amplitude. We are studying the first and second order terms of this expansion. It is further shown that the curves J = constant closely fit the results obtained by a numerical integration of the system of differential equations governing the motion of the particles.  相似文献   
10.
A multivariate statistical modelling approach was applied to explain the anthropogenic pressure of nitrate pollution on the Kinshasa groundwater body (Democratic Republic of Congo). Multiple regression and regression tree models were compared and used to identify major environmental factors that control the groundwater nitrate concentration in this region. The analyses were made in terms of physical attributes related to the topography, land use, geology and hydrogeology in the capture zone of different groundwater sampling stations. For the nitrate data, groundwater datasets from two different surveys were used. The statistical models identified the topography, the residential area, the service land (cemetery), and the surface-water land-use classes as major factors explaining nitrate occurrence in the groundwater. Also, groundwater nitrate pollution depends not on one single factor but on the combined influence of factors representing nitrogen loading sources and aquifer susceptibility characteristics. The groundwater nitrate pressure was better predicted with the regression tree model than with the multiple regression model. Furthermore, the results elucidated the sensitivity of the model performance towards the method of delineation of the capture zones. For pollution modelling at the monitoring points, therefore, it is better to identify capture-zone shapes based on a conceptual hydrogeological model rather than to adopt arbitrary circular capture zones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号