首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
地球物理   2篇
地质学   13篇
自然地理   1篇
  2022年   1篇
  2019年   1篇
  2013年   1篇
  2012年   2篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2000年   1篇
  1996年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
A zoned intrusion with a biotite granodiorite core and arfvedsonite granite rim represents the source magma for an albitised granite plug near its eastern margin and radioactive siliceous veins along its western margin. A study of selected REE and trace elements of samples from this complex reveals that the albitised granite plug has at least a tenfold enrichment in Zr, Hf, Nb, Ta, Y, Th, U and Sr, and a greatly enhanced heavy/light REE ratio compared with the peralkaline granite. The siliceous veins have even stronger enrichment of these trace elements, but a heavy/light REE ratio and negative eu anomaly similar to the peralkaline granite. It is suggested that the veins were formed from acidic volatile activity and the plug from a combination of highly fractionated magma and co-existing alkaline volatile phase. The granodiorite core intrudes the peralkaline granite and has similar trace element geochemistry. The peralkaline granite is probably derived from the partial melting of the lower crust in the presence of halide-rich volatiles, and the granodiorite from further partial melting under volatile-free conditions.  相似文献   
2.
Tromelin is a small coral reef island (1 km2) located in the Indian Ocean, approximately 440 km east of Madagascar and 580 km north of La Réunion. Despite the presence of a permanent Météo France weather station on Tromelin since the 1950 s, a detailed geomorhological study of the island has never been undertaken. In this paper, we describe results from the 2008 field season, which enabled us to map and describe seven geomorphological zones on the atoll. (1) Tromelin's bathymetry is characterised by a pronounced submarine slope, which attains depths of 1000 m at only 2.5 km from the island's coastline. This geomorphology is typical of volcanic hotspots. (2) A coral platform borders the emerged crown of the island. This platform is exposed at low tide and has been fashioned in an ancient Pleistocene substratum. The substratum has been eroded by abrasive marine action to its present shape since the stabilisation of relative sea level around 6000 years ago. Erosion of the reef yields most of the biogenic sediment supply to the island. (3) The upper foreshore is characterised by outcrops of beachrock. These formations show a stratfication in slabs and dip gently towards the sea in the same manner as the contemporary clastic sediments. (4) Tromelin's beaches are divided into three sub-units, which reflect the different energy dynamics around the island, in addition to the transfer of sediment from the windward to the leeward side: (i) the southern storm beaches are characterised by coral blocks reworked during episodic high-energy events; they form boulder ramparts. Four perched rampart ridges have been recorded at ∼1 m, ∼3 m, ∼4.5 m and ∼7 m above mean sea level; (ii) transitional beaches are observed between the south and the north, constituting storm blocks and coarse sands and gravels; and (iii) sandy beaches are noted on the northern leeward side, comprising rounded gravels and coarse sands. The northern tip of the island is characterised by a sand spit (∼125 × ∼225 m), whose geometry varies based on the seasonal and meteo-marine contexts. (5) On Tromelin, a number of dune formations are observed. These are best developed in the north of the island due to the south-north translation of clastic sediments by aeolian wind action, and the trapping of sands by the well-developed vegetation. The height of the dunes varies between 10 cm (the southern micro-dunes) to 250 cm in the Northeast of Tromelin. (6) Exceptional waves have deposited storm tracts up to 250 m from the foreshore zone, comprising coarse gravels and coral blocks. The storm tract deposits are most prevalent on the windward side of the island, due not only to the high-energy dynamics, but also to the absence of vegetation cover in this area. (7) The southern depression covers an area of ∼40,000 m2. At its lowest point it is only 1.2 m above sea level.  相似文献   
3.
Natural Hazards - The western Makran subduction zone is capable of producing considerable tsunami run-up heights that penetrate up to 5 km inland. In this study, we show how climate change...  相似文献   
4.
The Quebradagrande Complex of Western Colombia consists of volcanic and Albian–Aptian sedimentary rocks of oceanic affinity and outcrops in a highly deformed zone where spatial relationships are difficult to unravel. Berriasian–Aptian sediments that display continental to shallow marine sedimentary facies and mafic and ultramafic plutonic rocks are associated with the Quebradagrande Complex. Geochemically, the basalts and andesites of the Quebradagrande Complex mostly display calc-alkaline affinities, are enriched in large-ion lithophile elements relative to high field strength elements, and thus are typical of volcanic rocks generated in supra-subduction zone mantle wedges. The Quebradagrande Complex parallels the western margin of the Colombian Andes’ Central Cordillera, forming a narrow, discontinuous strip fault-bounded on both sides by metamorphic rocks. The age of the metamorphic rocks east of the Quebradagrande Complex is well established as Neoproterozoic. However, the age of the metamorphics to the west – the Arquía Complex – is poorly constrained; they may have formed during either the Neoproterozoic or Lower Cretaceous. A Neoproterozoic age for the Arquía Complex is favored by both its close proximity to sedimentary rocks mapped as Paleozoic and its intrusion by Triassic plutons. Thus, the Quebradagrande Complex could represent an intracratonic marginal basin produced by spreading-subsidence, where the progressive thinning of the lithosphere generated gradually deeper sedimentary environments, eventually resulting in the generation of oceanic crust. This phenomenon was common in the Peruvian and Chilean Andes during the Uppermost Jurassic and Lower Cretaceous. The marginal basin was trapped during the collision of the Caribbean–Colombian Cretaceous oceanic plateau, which accreted west of the Arquía Complex in the Early Eocene. Differences in the geochemical characteristics of basalts of the oceanic plateau and those of the Quebradagrande Complex indicate these units were generated in very different tectonic settings.  相似文献   
5.
Chrono-stratigraphic data from Tyre's ancient northern harbour delineate extensive dredging practices during the Greco-Roman and Byzantine periods. Radiocarbon dates from four cores consistently cluster between ca. 500 B.C. and 1000 A.D. and indicate rapid rates of sedimentation in the basin, namely ∼10 mm/yr during the Greco-Roman and Byzantine periods, compared to 0.5-1 mm/yr for the period 6000-4000 B.C. Absence of strata between 4000 B.C. and 500 B.C. is not consistent with a natural base-level sediment sink and cannot be interpreted as a depositional hiatus in the high-stand systems tract. Ancient dredging is further corroborated by persistent age-depth inversions within the fine-grained harbour facies. These data support removal of Middle Bronze Age to Persian period sediment strata, with deliberate overdeepening of the harbour bottom by Greco-Roman and Byzantine societies.  相似文献   
6.
Ras Ibn Hani peninsula, a wave-dominated tombolo (800 × 1000 m) on the Syrian coast, provides evidence for significant Holocene changes that can be linked to geological inheritance, rising post-glacial sea level, sediment supply and human impacts. Initial development of Ras Ibn Hani's coastal system began ~ 8000 years ago when shallow marine environments formed in a context of rising post-glacial sea level. Following relative sea-level stabilization ~ 6000 cal yr BP, beach facies trace the gradual formation of a wave-dominated sandbank fronted by a ~ 2300 × ~ 500 m palaeo-island whose environmental potentiality was attractive to Bronze Age societies. A particularly rapid phase of tombolo accretion is observed after ~ 3500 cal yr BP characterised by a two- to fourfold increase in sedimentation rates. This is consistent with (i) a pulse in sediment supply probably driven by Bronze Age/Iron Age soil erosion in local catchments, and (ii) positive feedback mechanisms linked to regionally attested neotectonics. Archaeological remains and radiocarbon datings confirm that the subaerial tombolo was probably in place by the Late Bronze Age. These data fit tightly with other eastern Mediterranean tombolo systems suggesting that there is a great deal of predictability to their geology and stratigraphy at the regional scale.  相似文献   
7.
Fish tanks become fashionable throughout the Mediterranean area between the 1st century B.C. and the 1st century A.D. Because of this narrow chronological window, and their link to former sea level, they constitute precious archives to investigate relative sea level (RSL) since the Roman period, especially when combined with fossilized marine benthos found attached to the fish tank walls. Here, we present new results from an integrated analysis of a fish tank located in the Roman colony of Fréjus, Southeastern France. The well‐preserved biological remains on the fish tank wall allow us to estimate an RSL rise of 40 ± 10 cm at Fréjus since Roman times, consistent with a recently published range of −32 to −58 ± 5 cm for the Northwestern Mediterranean for the same time. By contrast, the findings contradict the ∼150 cm of RSL change since Roman times reported for the Northwestern Mediterranean by some authors. © 2013 Wiley Periodicals, Inc.  相似文献   
8.
9.
Nick Marriner  Christophe Morhange   《Earth》2007,80(3-4):137-194
Although much has been written on the subject of ancient Mediterranean harbours, the relatively new area of harbour geoarchaeology remains dispersed in the geoscience and archaeological literature. Over a decade of research has amassed rich and varied datasets of anthropogenically forced coastal evolution, with a remarkable number of between-site analogies. This new research field also shows the rich potential of geoscience to reconcile important archaeological questions. No single publication, however, has yet drawn on these geological patterns to yield a detailed overview suitable for geoscientists and environmental archaeologists. The aim of this review article is to (1) discuss how ancient harbours have come to be preserved in the geological record; (2) expound the basic principles and palaeoenvironmental tools underpinning ancient harbour geoarchaeology; (3) outline some of the most significant research advances made; and (4) discuss a new chrono-stratigraphic model applicable to harbour sequences.  相似文献   
10.
Lechaion's ancient harbor is now a coastal swamp filled with sediments. Two natural factors explain the harbor's abandonment: (1) tectonic uplift during historical times and (2) the location of the harbor basin in a serpentine depression protected from the sea. Although it undoubtedly functioned as a very efficient sediment trap, only modest sedimentation rates (<1 mm/yr) have been measured in the basin. This paradox suggests that the basin was dredged and that the extracted sediments were dumped, forming a number of mounds around the harbor edges. The transition from marine organics to silt is dated to 750–400 cal. B.C. and precedes the 1.2 m uplift of the harbor at around 340 B.C., which underscores the minimal impact of tectonic forcing factors. The presence of fine‐grained sediments is consistent with an increasingly protected environment. The macrofauna indicate a low‐energy environment enriched with organic matter and brackish conditions. All data suggest that this environment became isolated from the sea. Although a seismic uplift around 340 B.C. played a partial role in the evolution of the harbor, it is not the sole natural forcing agent involved in the silting up of the basin. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号