首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   3篇
地质学   2篇
  2023年   1篇
  2017年   1篇
  2013年   1篇
  1997年   1篇
  1992年   1篇
排序方式: 共有5条查询结果,搜索用时 62 毫秒
1
1.
2.
3.
Abstract

Knowledge of the processes that control nitrate migration and its geochemical evolution in the subsurface are fundamental for the regional management of polluted aquifers. In this paper, the spatial distribution and transient variations of nitrate concentrations, associated with manure fertilization, are used to depict hydrogeological dynamics within the sedimentary aquifer system of la Plana de Vic in the Osona region of Spain. Flow systems are identified from geological, hydraulic head, hydrochemical and isotopic data, and by considering nitrate itself as a tracer that indicates how flow paths are modified by human pressures. In this area, nitrates move through fractured aquitards in flows induced by groundwater pumping. Moreover, the lack of casing in the boreholes permits a mixing of groundwater from distinct layers inside the wells, which negates any benefits from the low-nitrate groundwater found in the deepest aquifer layers. Therefore, impacts on groundwater quality are related to intensive manure fertilization as well as to inadequate well construction and exploitation strategies.

Citation Menció, A., Mas-Pla, J., Otero, N. & Soler, A. (2011) Nitrate as a tracer of groundwater flow in a fractured multilayered aquifer. Hydrol. Sci. J. 56(1), 108–122.  相似文献   
4.
5.
Mas-Pla  Josep  Brusi  David  Roqué  Carles  Soler  David  Menció  Anna  Costa  Josep M  Zamorano  Manuel  Meredith  Warren 《Hydrogeology Journal》2023,31(3):661-684

The mineral water of Vilajuïga village in Alt Empordà (NE Catalonia, Spain) owes its uniqueness to an emanation of geogenic CO2 that modifies groundwater hydrochemistry to produce a differentiated HCO3–Na- and CO2-rich groundwater among the usual Ca–HCO3 type found in this region. A hydrogeological conceptual model attributes its occurrence to the intersection of two faults: La Valleta and Garriguella-Roses. The former provides a thrust of metamorphic over igneous rocks, formed during the Paleozoic, over a layer of ampelitic shale that, from a hydrogeological perspective, acts as a confining layer. The Garriguella-Roses normal fault, which originated during the Neogene, permits the degassing of geogenic CO2 that is attributed to volcanic activity occurring in the Neogene. Groundwater mixing from the metamorphic and igneous rock units plus the local occurrence of CO2 creates a HCO3–Na water that still holds free-CO2 in solution. Interaction with the gas phase is restricted at the intersection of the two faults. Radiocarbon dating, after correcting for geogenic dead carbon, estimates an age of 8,000 years BP. The low tritium content (0.7 TU) indicates that Vilajuïga water is a mix of “older” groundwater recharged in the metamorphic rocks of the Albera range and “younger” groundwater from the igneous rocks of the Rodes range, over a recharge area of 45 km2 and a maximum elevation of 600 m. Given its origin as rare groundwater in the southern slope of the Eastern Pyrenees, purposeful monitoring is necessary to evaluate the groundwater vulnerability and anticipate impacts from nearby wells and climate-change effects.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号