首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   7篇
测绘学   1篇
大气科学   4篇
地球物理   11篇
地质学   24篇
海洋学   3篇
天文学   7篇
  2022年   3篇
  2021年   1篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   5篇
  2015年   2篇
  2014年   8篇
  2013年   6篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  1990年   1篇
  1978年   1篇
  1962年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
Stream water temperature plays a significant role in aquatic ecosystems where it controls many important biological and physical processes. Reliable estimates of water temperature at the daily time step are critical in managing water resources. We developed a parsimonious piecewise Bayesian model for estimating daily stream water temperatures that account for temporal autocorrelation and both linear and nonlinear relationships with air temperature and discharge. The model was tested at 8 climatically different basins of the USA and at 34 sites within the mountainous Boise River Basin (Idaho, USA). The results show that the proposed model is robust with an average root mean square error of 1.25 °C and Nash–Sutcliffe coefficient of 0.92 over a 2‐year period. Our approach can be used to predict historic daily stream water temperatures in any location using observed daily stream temperature and regional air temperature data.  相似文献   
2.
3.
Appropriate quantification and identification of the groundwater distribution in a hydrological basin may provide necessary information for effective management, planning and development of groundwater resources. Groundwater potential assessment and delineation in a highly heterogeneous environment with limited Spatiotemporal data derived from Gelana watershed of Abaya Chamo lake basin is performed, using integrated multi-criteria decision analysis (MCDA), water and energy transfer between soil and plant and atmosphere under quasi-steady state (WetSpass) models. The outputs of the WetSpass model reveal a favorable structure of water balance in the basin studied, mainly using surface runoff. The simulated total flow and groundwater recharge are validated using river measurements and estimated baseflow at two gauging stations located in the study area, which yields a good agreement. The WetSpass model effectively integrates a water balance assessment in a geographical information system (GIS) environment. The WetSpass model is shown to be computationally reputable for such a remote complex setting as the African rift, with a correlation coefficient of 0.99 and 0.99 for total flow and baseflow at a significant level of p-value<0.05, respectively. The simulated annual water budget reveals that 77.22% of annual precipitation loses through evapotranspiration, of which 16.54% is lost via surface runoff while 6.24% is recharged to the groundwater. The calibrated groundwater recharge from the WetSpass model is then considered when determining the controlling factors of groundwater occurrence and formation, together with other multi-thematic layers such as lithology, geomorphology, lineament density and drainage density. The selected five thematic layers through MCDA are incorporated by employing the analytical hierarchy process (AHP) method to identify the relative dominance in groundwater potential zoning. The weighted factors in the AHP are procedurally aggregated, based on weighted linear combinations to provide the groundwater potential index. Based on the potential indexes, the area then is demarcated into low, moderate, and high groundwater potential zones (GWPZ). The identified GWPZs are finally examined using the existing groundwater inventory data (static water level and springs) in the region. About 70.7% of groundwater inventory points are coinciding with the delineated GWPZs. The weighting comparison shows that lithology, geomorphology, and groundwater recharge appear to be the dominant factors influence on the resources potential. The assessment of groundwater potential index values identify 45.88% as high, 39.38% moderate, and 14.73% as low groundwater potential zones. WetSpass model analysis is more preferable in the area like Gelana watershed when the topography is rugged, inaccessible and having limited gauging stations.  相似文献   
4.
5.
In this paper we have studied the anisotropic Kantowski-Sachs, locally rotationally symmetric (LRS) Bianchi type-I and LRS Bianchi type-III geometries filled with dark energy and one dimensional cosmic string in the Saez-Ballester theory of gravitation. To get physically valid solution we take hybrid expansion law of the average scale factor which is a product of power and exponential type of functions that results in time dependent deceleration parameter (\(q\)). The equation of state parameter of dark energy (\(\omega _{\mathit{de}}\)) has been discussed and we have observed that for the three models it crosses the phantom divide line (\(\omega _{\mathit{de}} = -1\)) and shows quintom like behavior. The density of dark energy (\(\rho _{\mathit{de}}\)) is an increasing function of redshift and remains positive throughout the evolution of the universe for the three models. Moreover in Kantowski-Sachs and LRS Bianchi type-I geometries the dark energy density dominates the string tension density (\(\lambda \)) and proper density (\(\rho \)) throughout the evolution of the universe. The physical and geometrical aspects of the statefinder parameters (\(r,s\)), squared speed of sound (\(v_{s}^{2} \)) and \(\omega _{\mathit{de}}\)\(\omega ^{\prime }_{\mathit{de}}\) plane are also discussed.  相似文献   
6.
The aim of this study is to develop a two-dimensional hydrodynamic tidal model for the Persian Gulf (PG2017) using 2D-MIKE21 software. The advantages of present study is accounting for the spatial variation of bed friction coefficient besides a precise bathymetry together with a 23-year of combined records of satellite altimetry data. We found that the bed friction coefficient has a significant effect on sea level changes in the region under our modeling consideration. Since the tidal behavior in the northern part of the Qeshm Island is significantly different from the other parts of the Persian Gulf, to present a more accurate hydrodynamic tidal model, the Gulf is divided into two regions where the bed friction coefficient is modeled separately for each region. The root mean square value of the differences between the amplitude of dominant constituents; M2, S2, K1, and O1 derived from the PG2017 model and that of 98 altimetry and coastal tide gauge stations are respectively equal to 1.6, 1.9, 2.8, and 1.3?cm. Moreover, comparing the PG2017 model efficiency with the FES2014, OSU12, EOT11a, DTU10, and Admiralty models shows that the PG2017 model has an improvement of 22.1%, 47.2%, 43.2%, 44.2%, and 57.6% in terms of relative error, respectively.  相似文献   
7.
A three dimensional steady-state finite difference groundwater flow model is used to quantify the groundwater fluxes and analyze the subsurface hydrodynamics in the Akaki catchment by giving particular emphasis to the well field that supplies water to the city of Addis Ababa. The area is characterized by Tertiary volcanics covered with thick residual and alluvial soils. The model is calibrated using head observations from 131 wells. The simulation is made in a two layer unconfined aquifer with spatially variable recharge and hydraulic conductivities under well-defined boundary conditions. The calibrated model is used to forecast groundwater flow pattern, the interaction of groundwater and surface water, and the effect of pumping on the well field under different scenarios. The result indicates that the groundwater flows regionally to the south converging to the major well field. Reservoirs and rivers play an important role in recharging the aquifer. Simulations made under different pumping rate indicate that an increase in pumping rate results in substantial regional groundwater level decline, which will lead to the drying of springs and shallow hand dug wells. Also, it has implications of reversal of flow from contaminated rivers into productive aquifers close to main river courses. The scenario analysis shows that the groundwater potential is not enough to sustain the ever-growing water demand of the city of Addis Ababa. The sensitivity and scenario analysis provided important information on the data gaps and the specific sites to be selected for monitoring, and may be of great help for transient model development. This study has laid the foundation for developing detailed predictive groundwater model, which can be readily used for groundwater management practices.  相似文献   
8.
Natural Hazards - Ecosystem-based disaster risk reduction (Eco-DRR) is a concept of reducing the risk to natural hazards by avoiding the developments and settlements in disaster-prone areas by...  相似文献   
9.
Analysis of the total heavy metal (Cr, Cd, Pb, As, Cu, Ni, Zn, Co) concentration was performed on 33 soil samples taken from different profiles and soil types in a highly urbanized and industrial sector of Addis Ababa, central Ethiopia. They were analyzed using aqua regia extraction coupled with a four-stage sequential extraction (SE) procedure. The objectives of the analysis were to investigate the degree of soil heavy metal contamination, its binding forms, mobility and the implications for the groundwater resource. The results show a relatively high content of the analyzed trace metals in the soil attributed to anthropogenic and geogenic sources. Although most of the trace metals are found in the upper few centimeters of the residual soils, because of churning processes within the black cotton soils, vertical distribution of the trace metals is complex. According to the heavy metal SE analysis, the major heavy metal contribution is from the residual followed by the hydroxide phases. Groundwater heavy metal contamination is present with more than 90 and 50% of the analyzed groundwater samples exceeding WHO guidelines for Cr and Cd, respectively. Since the degree of soil heavy metal contamination has apparently not surpassed the soil’s buffering capacity, it appears that the transport path of these toxic metals to the groundwater is through fractures, joints, and related preferential flow paths.  相似文献   
10.
Recharge patterns, possible flow paths and the relative age of groundwater in the Akaki catchment in central Ethiopia have been investigated using stable environmental isotopes δ18O and δ2H and radioactive tritium (3H) coupled with conservative chloride measurements. Stable isotopic signatures are encoded in the groundwater solely from summer rainfall. Thus, groundwater recharge occurs predominantly in the summer months from late June to early September during the major Ethiopian rainy season. Winter recharge is lost through high evaporation–evapotranspiration within the unsaturated zone after relatively long dry periods of high accumulated soil moisture deficits. Chloride mass balance coupled with the isotope results demonstrates the presence of both preferential and piston flow groundwater recharge mechanisms. The stable and radioactive isotope measurements further revealed that groundwater in the Akaki catchment is found to be compartmentalized into zones. Groundwater mixing following the flow paths and topography is complicated by the lithologic complexity. An uncommon, highly depleted stable isotope and zero‐3H groundwater, observed in a nearly east–west stretch through the central sector of the catchment, is coincident with the Filwoha Fault zone. Here, deep circulating meteoric water has lost its isotopic content through exchange reactions with CO2 originating at deeper sources or it has been recharged with precipitation from a different rainfall regime with a depleted isotopic content. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号