首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   12篇
  国内免费   13篇
大气科学   1篇
地球物理   6篇
地质学   26篇
天文学   50篇
自然地理   1篇
  2023年   1篇
  2022年   1篇
  2019年   2篇
  2018年   6篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   11篇
  2011年   1篇
  2010年   14篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2002年   3篇
  1998年   1篇
  1996年   3篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
1.
The mineralogy and geochemistry of Ceres, as constrained by Dawn's instruments, are broadly consistent with a carbonaceous chondrite (CM/CI) bulk composition. Differences explainable by Ceres’s more advanced alteration include the formation of Mg‐rich serpentine and ammoniated clay; a greater proportion of carbonate and lesser organic matter; amounts of magnetite, sulfide, and carbon that could act as spectral darkening agents; and partial fractionation of water ice and silicates in the interior and regolith. Ceres is not spectrally unique, but is similar to a few other C‐class asteroids, which may also have suffered extensive alteration. All these bodies are among the largest carbonaceous chondrite asteroids, and they orbit in the same part of the Main Belt. Thus, the degree of alteration is apparently related to the size of the body. Although the ammonia now incorporated into clay likely condensed in the outer nebula, we cannot presently determine whether Ceres itself formed in the outer solar system and migrated inward or was assembled within the Main Belt, along with other carbonaceous chondrite bodies.  相似文献   
2.
The Visible and Infrared Spectrometer (VIR) instrument on the Dawn mission observed Ceres’s surface at different spatial resolutions, revealing a nearly uniform global distribution of surface mineralogy. Clearly, Ceres experienced extensive water‐related processes and chemical differentiation. The surface is mainly composed of a dark component (carbon, magnetite?), Mg‐phyllosilicates, ammoniated clays, carbonates, and salts. The observed species suggest endogenous, global‐scale aqueous alteration. While mostly uniform at regional scale, Ceres’s surface shows small localized areas with different species and/or variations in abundances. Few local exposures of water ice are seen, especially at higher latitudes. Sodium carbonates have been identified in several areas on the surface, notably in Occator bright faculae. Organic matter has also been discovered in several places, most conspicuously in a large area close to the Ernutet crater. The observed mineralogies, with the presence of ammoniated species and sodium salts, have a strong resemblance to materials found on other bodies of the outer solar system, such as Enceladus. This poses some questions about the original material from which Ceres accreted, suggesting a colder environment for such material with respect to Ceres’s present position.  相似文献   
3.
Abstract— Modal mineralogies of individual, equilibrated (petrologic type 4–6 L and LL chondrites have been measured using an electron microprobe mapping technique, and the chemical compositions of coexisting silicate minerals have been analyzed. Progressive changes in the relative abundances and in the molar Fe/Mn and Fe/Mg ratios of olivine, low‐Ca pyroxene, and diopside occur with increasing metamorphic grade. Variations in olivine/low‐Ca pyroxene ratios (Ol/Px) and in metal abundances and compositions with petrologic type support the hypothesis that oxidation of metallic iron accompanied thermal metamorphism in ordinary chondrites. Modal Ol/Px ratios are systematically lower than normative Ol/Px ratios for the same meteorites, suggesting that the commonly used C.I.P.W. norm calculation procedure may not adequately estimate silicate mineral abundances in reduced chondrites. Ol/Px ratios calculated from visible and near‐infrared (VISNIR) reflectance spectra of the same meteorites are not in agreement with other Ol/Px determinations, possibly because of spectral complexities arising from other minerals in chondrites. Characteristic features in VISNIR spectra are sensitive to the proportions and compositions of olivine and pyroxenes, the minerals most affected by oxidative metamorphism. This work may allow spectral calibration for the determination of mineralogy and petrologic type, and thus may be useful for spectroscopic studies of asteroids.  相似文献   
4.
ALHA 77005, a shocked achondrite of the shergottite group, is unique in containing cumulus olivine crystals which display a brownish color in thin section. Mössbauer, EPR, and optical spectroscopic studies show the presence of Fe3+ in the olivine. Approximately 4.5 wt.% of the total iron in the olivine (24 wt.% as FeO) is in the trivalent state. The Fe3+ ions preferentially occupy M2 lattice positions. Charge transfer between Fe3+ and Fe2+ as well as between Fe3+ and oxygen ligands causes a broad absorption band in the optical spectrum at high energies which is the reason for the olivine color. It is concluded that the color of the ALHA 77005 olivine is preterrestrial and may be the result of shock-induced oxidation of the olivine crystals on the meteorite parent body.  相似文献   
5.
The EETA 79001 achondrite consists of two distinct igneous lithologies joined along a planar, non-brecciated contact. Both are basaltic rocks composed primarily of pigeonite, augite, and maskelynite, but one contains zoned megacrysts of olivine, orthopyroxene, and chromite that represent disaggregated xenoliths of harzburzite. Both lithologies probably formed from successive volcanic flows or multiple injections of magma into a small, shallow chamber. Many similarities between the two virtually synchronous magmas suggest that they are related. Possible mechanisms to explain their differences involve varying degrees of assimilation, fractionation from similar parental magmas, or partial melting of a similar source peridotite; of these, assimilation of the observed megacryst assemblage seems most plausible. However, some isotopic contamination may be required in any of these petrogenetic models. The meteorite has suffered extensive shock metamorphism and localized melting during a large impact event that probably excavated and liberated it from its parent body. Both basaltic lithologies and the inferred ultramafic protolith of the megacryst assemblage are petrologically similar to other members of the shergottite group, and all may have been derived from a volcanic-plutonic complex on a planetary body.  相似文献   
6.
7.
The modal abundance of matrix in CM chondrites appears to vary from 57–85 vol%. The concentrations of volatile elements that should occur in matrix remain approximately constant despite differences in the proportions of matrix, suggesting that the differing matrix contents may not be real primary variations but are optical effects due to aqueous alteration processes that make other petrologic components unrecognizable. Apparent matrix content can be used as a qualitative measure of the degree of alteration experienced by each CM chondrite. Fe/Si ratios in matrices decrease progressively with increasing alteration due to the formation of new phyllosilicate phases with higher Mg/Fe ratios and optically recognizable opaque minerals that are not counted as matrix. The aqueous alteration process in CM chondrites appears to have been largely isochemical if the bulk meteorites are considered as the reacting systems, although depletion patterns and isotopic anomalies indicate open-system behavior for a few highly mobile components.  相似文献   
8.
A fragment found in soil from the Apollo 12 site (12037, from the rim of Bench Crater) appears to be a unique type of chondrite, petrologically and chemically distinct from other chondrites and lunar rocks. Inclusions consisting of shocked pyroxene rimmed by euhedral troilite crystals are set in a black aphanitic matrix. Abundant magnetite in the matrix exhibits microscopic morphologies (framboids and plaquets) characteristic of C1 chondrites. The bulk composition of this sample has high Mg/Si and low Fe/Si relative to other chondrites, and P and S are strongly enriched. Most compositional differences between this meteorite and other chondrites may be explained by fractionation of Fe phases, such as magnetite and troilite. Low refractory element contents preclude mixing with lunar materials. This sample may be a surviving fragment of the meteoritic component present in the lunar regolith. Its characteristics suggest that ancient meteoritic debris sampled by the moon may be significantly different from that captured by the present-day earth.  相似文献   
9.
铜陵矿集区是我国长江中下游Cu-Au-Fe-Mo成矿带中最重要的有色金属基地之一,凤凰山矿床是铜陵矿集区的重要组成部分,为一个典型的夕卡岩型铜矿床。本文利用Re-Os同位素定年方法对凤凰山铜矿床进行了成矿时代测定,获得了辉钼矿的Re-Os同位素模式年龄范围为139.1±2.4~142.0±2.2Ma,等时线年龄为141.1±1.4Ma,与矿区内石英二长闪长岩和花岗闪长岩SHRIMP锆石U-Pb年龄(144.2±2.3Ma)相吻合,也与铜陵地区其他矿田的成矿时代基本一致,可能为岩石圈减薄事件的成矿响应。  相似文献   
10.
西拉木伦钼铜多金属成矿带处于华北克拉通与中亚造山带的过渡区,是古生代古亚洲构造域与中生代西太平洋构造域的交汇部位。在中生代受多种构造体系的制约,如中亚造山带造山后期局部伸展、蒙古-鄂霍茨克俯冲-碰撞造山作用、古太平洋板块的向西俯冲和中国东部岩石圈减薄事件的影响等。西拉木伦成矿带成矿斑岩锆石U-Pb年龄和辉钼矿Re-Os同位素年龄资料显示,钼铜矿成岩成矿主要集中在260~220Ma、180~150Ma和140~120Ma三个时期。结合华北克拉通北缘构造演化历史,推测这三期成矿作用主要与造山后局部伸展、构造体系转折和陆内伸展(岩石圈减薄)过程有关,并相应建立了"车户沟式"、"鸡冠山式"和"敖伦花式"三类斑岩钼铜矿床成矿模式。进一步研究表明,岩石的酸碱性、岩浆来源、岩浆的氧逸度、岩浆演化方式、构造背景等因素,制约了成矿作用的专属性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号