首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
大气科学   2篇
地球物理   5篇
地质学   3篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2009年   1篇
  2008年   2篇
  2005年   1篇
  1998年   1篇
  1956年   1篇
排序方式: 共有10条查询结果,搜索用时 343 毫秒
1
1.
Observed summer (May–October) rainfall in Myanmar for the period 1981–2010 was used to investigate the interannual variability of summer monsoon rainfall over Myanmar. Empirical orthogonal function, the sequential Mann-Kendall test, power spectrum analysis, and singular value decomposition (SVD) were deployed in the study. Results from spectral analysis showed that the variability of rainfall over Myanmar exhibits a 2- to 6-year cycle. An abrupt change in rainfall over the country was noted in 1992. There was a notable increasing rainfall trend from 1989. After the sudden change, the mean rainfall increased by 36.1 mm, compared with the mean rainfall before the sudden change, and was associated with a rise in temperature of about 0.2 °C. An increase in heavy rainfall days was observed from the early 1990s to 2010. IOD and ENSO play an important role in the interannual variability of the summer rainfall over Myanmar. The covariability between rainfall over Myanmar and Indian Ocean SST generally suggests that a positive IOD mode is associated with suppressed rainfall in the central and northern parts of Myanmar. During a negative IOD mode, nearly the whole Myanmar experiences enhanced rainfall, which is associated with devastating socioeconomic impacts. The covariability between the rainfall over Myanmar and the sea surface temperature in the Pacific Ocean in the first and second SVD modes was dominated by warming in the east and central Pacific—an El Niño-like pattern—resulting in dry conditions in central Myanmar.  相似文献   
2.
3.
Estimates of daily lake evaporation based on energy‐budget data are poor because of large errors associated with quantifying change in lake heat storage over periods of less than about 10 days. Energy‐budget evaporation was determined during approximately biweekly periods at a northern Minnesota, USA, lake for 5 years. Various combinations of shortwave radiation, air temperature, wind speed, lake‐surface temperature, and vapour‐pressure difference were related to energy‐budget evaporation using linear‐regression models in an effort to determine daily evaporation without requiring the heat‐storage term. The model that combined the product of shortwave radiation and air temperature with the product of vapour‐pressure difference and wind speed provided the second best fit based on statistics but provided the best daily data based on comparisons with evaporation determined with the eddy‐covariance method. Best‐model daily values ranged from ?0.6 to 7.1 mm/day over a 5‐year period. Daily averages of best‐model evaporation and eddy‐covariance evaporation were nearly identical for all 28 days of comparisons with a standard deviation of the differences between the two methods of 0.68 mm/day. Best‐model daily evaporation also was compared with two other evaporation models, Jensen–Haise and a mass‐transfer model. Best‐model daily values were substantially improved relative to Jensen–Haise and mass‐transfer values when daily values were summed over biweekly energy‐budget periods for comparison with energy‐budget results.  相似文献   
4.
5.
Aerodynamic Scaling for Estimating the Mean Height of Dense Canopies   总被引:1,自引:1,他引:0  
We used an aerodynamic method to objectively determine a representative canopy height, using standard meteorological measurements. The canopy height may change if the tree height is used to represent the actual canopy, but little work to date has focused on creating a standard for determining the representative canopy height. Here we propose the ‘aerodynamic canopy height’ h a as the most effective means of resolving the representative canopy height for all forests. We determined h a by simple linear regression between zero-plane displacement d and roughness length z 0, without the need for stand inventory data. The applicability of h a was confirmed in five different forests, including a forest with a complex canopy structure. Comparison with stand inventory data showed that h a was almost equivalent to the representative height of trees composing the crown surface if the forest had a simple structure, or to the representative height of taller trees composing the upper canopy in forests with a complex canopy structure. The linear relationship between d and z 0 was explained by assuming that the logarithmic wind profile above the canopy and the exponential wind profile within the canopy were continuous and smooth at canopy height. This was supported by observations, which showed that h a was essentially the same as the height defined by the inflection point of the vertical profile of wind speed. The applicability of h a was also verified using data from several previous studies.  相似文献   
6.
Hydrochemical conditions up to depths of 1000 m below ground level around the Mizunami Underground Research Laboratory were investigated to construct a “baseline condition model” describing the undisturbed hydrochemical environment prior to excavation of the underground facilities at Mizunami, Gifu, Japan. Groundwater chemistry in this area was classified into a Na–Ca–HCO3 type of groundwater in the upper part of sedimentary rock sequence and a Na–(Ca)–Cl type of groundwater in the deeper part of the sedimentary rock sequence and basement granite. The residence time of the groundwaters was estimated from their 14C contents to be approximately 9.3 ka in the middle part of the sedimentary rock and older than 50 ka in the deep part of the granite. The evolution processes of these groundwaters were inferred to be water–rock interactions such as weathering of plagioclase, dissolution of marine sulphate/sulphide minerals and carbonate minerals in the Na–Ca–HCO3 type of groundwater, and mixing between “low-salinity water” in the shallow part and “higher-salinity water” in the deeper part of the granite in the Na–(Ca)–Cl type of groundwater. The source of salinity in the deeper part of the granite was possibly a palaeo-hydrothermal water or a fossil seawater that recharged in the Miocene, subsequently being modified by long-term water–rock interaction. The Cl-depth trend in granitic groundwater changes at a depth of −400 m below sea level. The hydrogeological properties controlling the groundwater flow and/or mixing processes such as advection and diffusion were inferred to be different at this depth in the granite. This hydrochemical conceptual model is indispensable not only when constructing the numerical model for evaluating the hydrochemical disturbance during construction and operation of the MIU facility, but also when confirming a hydrogeological model.  相似文献   
7.
This paper investigates dynamics of a spherical bubble surrounded by a viscoelastic fluid. The purpose of the study is to understand the parameters which control expansion and fragmentation of bubbly magma by decompression. In particular, we focus on which occurs first, fragmentation or expansion. Supposing that rupture of the bubble wall occurs in a critical stress condition, we calculate the change of the bubble radius and tensile stress at the bubble wall for various decompression rates. Conditions in which tensile stress is stored in the shell are represented in terms of dimensionless parameters. The results are interpreted as follows: when magma viscosity is larger than a critical value, and the decompression time is shorter than viscous expansion time, tensile stress is stored before expansion; when magma viscosity is smaller than the critical value, tensile stress is not stored, no matter how rapid the decompression. Although it is a generally accepted theory that fragmentation is effected by stress conditions and decompression time, exactly how decompression time (t1) effects the fragmentation is not yet fully understood. This study demonstrates that the stress condition is controlled by the length of the decompression time not relative to the viscoelastic relaxation time (t1 / τ), but relative to the viscous expansion time (t1 / τlrlx). As suggested by recent experimental studies, the decompression time relative to viscoelastic relaxation time (t1 / τ) is also significant to the fragmentation process itself. It indicates that the decompression time effects the fragmentation not through the stress condition. However more work must be completed to fully understand the particular relationship between the decompression time and relaxation time in terms of its influence on fragmentation.  相似文献   
8.
Precambrian microbial fossils show carbonaceous cellular structure, which often resemble in shape and size cyanobacteria and other prokaryotes. Morphological taxonomy of these minute, simple, and more or less degraded fossils is, however, often not enough to determine their precise phylogenetic positions. Here we report the results of micro-FTIR spectroscopic analyses of well-preserved microfossils in 850 Ma and 1900 Ma stromatolites, together with those of 8 species of extant prokaryotes and 5 of eukaryotes for comparison. These Proterozoic fossils have low CH3/CH2 absorbance ratios (R3/2 < 0.5) of aliphatic CH moieties, suggesting selective preservation of long, straight, aliphatic carbon chains probably derived from bacterial membrane lipids. All the observed R3/2 values of coccoids, filaments and amorphous organic matter resemble lipid fractions of extant Bacteria including cyanobacteria, but not Archaea. The results indicate that Proterozoic microfossils belong to Bacteria, which is consistent with the cyanobacterial origin inferred from morphology. Moreover, the R3/2 value of fossilized cell would reflect chemical composition of its precursor membrane lipid, thus could be a useful new tracer for distinguishing Archaea, Bacteria and possibly Eucarya for fossilized and extant microorganisms.  相似文献   
9.
ABSTRACT

Many studies have focused on soil erosion in unmanaged Japanese cypress plantations because the sparse understory vegetation and litter covering the forest ground enhance soil erosion. In this study, soil erosion, litter, and overland flow measurements were conducted over 14 months to identify the spatio-temporal variation and examine the optimal sample size. Fifteen traps (each 0.25 m wide) were installed in line along the bottom of a 15-m-wide slope. Soil erosion and overland flow had large spatial variations as compared to litter. The temporal coefficient of variation of soil erosion and overland flow was highest during dry seasons, while smaller during wet seasons. The random sampling analysis showed that the rate of decrease in spatio-temporal variation became moderate as the sample size increased beyond six. This result indicated that the optimal sample size was five, the total width of which was equivalent to about 8% of the monitored slope width.  相似文献   
10.
Sr and Nd isotope and geochemical investigations were performed on a remarkably homogeneous, high-silica rhyolite magma reservoir of the Aira pyroclastic eruption (22,000 years ago), southern Kyushu, Japan. The Aira caldera was formed by this eruption with four flow units (Osumi pumice fall, Tsumaya pryoclastic flow, Kamewarizaka breccia and Ito pyroclastic flow). Quite narrow chemical compositions (e.g., 74.0–76.5 wt% of SiO2) and Sr and Nd isotopic values (87Sr/86Sr=0.70584–0.70599 and Nd=−5.62 to −4.10) were detected for silicic pumices from the four units, with the exception of minor amounts of dark pumices in the units. The high Sr isotope ratios (0.7065–0.7076) for the dark pumices clearly suggest a different origin from the silicic pumices. Andesite to basalt lavas in pre-caldera (0.37–0.93 Ma) and post-caldera (historical) eruptions show lower 87Sr/86Sr (0.70465–0.70540) and higher Nd (−1.03 to +0.96) values than those of the Aira silicic and dark pumices. Both andesites of pre- and post-caldera stages are very similar in major- and trace-element characteristics and isotope ratios, suggesting that the both andesites had a same source and experienced the same process of magma generation (magma mixing between basaltic and dacitic magmas). Elemental and isotopic signatures deny direct genetic relationships between the Aira pumices and pre- and post-caldera lavas. Relatively upper levels of crust (middle–upper crust) are assumed to have been involved for magma generation for the Aira silicic and dark pumices. The Aira silicic magma was derived by partial melting of a separate crust which had homogeneous chemistry and limited isotope compositions, while the magma for the Aira dark pumice was generated by AFC mixing process between the basement sedimentary rocks and basaltic parental magma, or by partial melting of crustal materials which underlay the basement sediments. The silicic magma did not occupy an upper part of a large magma body with strong compositional zonation, but formed an independent magma body within the crust. The input and mixing of the magma for dark pumices to the base of the Aira silicic magma reservoir might trigger the eruptions in the upper part of the magma body and could produce a slight Sr isotope gradient in the reservoir. An extremely high thermal structure within the crust, which was caused by the uprise and accumulation of the basaltic magma, is presumed to have formed the large volume of silicic magma of the Aira stage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号